
tda-api

May 12, 2020

Contents:

1 Getting Started 3
1.1 TD Ameritrade API Access . 3
1.2 Installing tda-api . 4

2 Authentication and Client Creation 5
2.1 OAuth Refresher . 5
2.2 Fetching a Token and Creating a Client . 6
2.3 Troubleshooting . 7

3 Client Wrapper 9
3.1 Calling Conventions . 9
3.2 Return Values . 10
3.3 Creating a New Client . 10
3.4 Orders . 10
3.5 Account Info . 12
3.6 Instrument Info . 13
3.7 Option Chains . 13
3.8 Price History . 15
3.9 Current Quotes . 17
3.10 Other Endpoints . 17

4 Creating Order Specifications 21
4.1 Common Values . 21
4.2 Equity Orders . 22

5 Utilities 25
5.1 Get the Most Recent Order . 25

6 Example Application 27

7 Contributing to tda-api 29
7.1 Setting up the Dev Environment . 29
7.2 Development Guidelines . 30

8 Indices and tables 31

Python Module Index 33

i

Index 35

ii

tda-api

This project is on GitHub

Contents: 1

https://github.com/alexgolec/tda-api

tda-api

2 Contents:

CHAPTER 1

Getting Started

Welcome to tda-api! Read this page to learn how to install and configure your first TD Ameritrade Python appli-
cation.

1.1 TD Ameritrade API Access

All API calls to the TD Ameritrade API require an API key. Before we do anything with tda-api, you’ll need to
create a developer account with TD Ameritrade and register an application. By the end of this section, you’ll have
accomplished the three prerequisites for using tda-api:

1. Create an application.

2. Choose and save the callback URL (important for authenticating).

3. Receive an API key.

You can create a developer account here. The instructions from here on out assume you’re logged in, so make sure
you log into the developer site after you’ve created your account.

Next, you’ll want to create an application. The app name and purpose aren’t particularly important right now, but the
callback URL is. In a nutshell, the OAuth login flow that TD Ameritrade uses works by opening a TD Ameritrade
login page, securely collecting credentials on their domain, and then sending an HTTP request to the callback URL
with the token in the URL query.

How you use to choose your callback URL depends on whether and how you plan on distributing your app. If you’re
writing an app for your own personal use, and plan to run entirely on your own machine, use https://localhost.
If you plan on running on a server and having users send requests to you, use a URL you own, such as a dedicated
endpoint on your domain.

Once your app is created and approved, you will receive your API key, also known as the Client ID. This will be
visible in TDA’s app listing page. Record this key, since it is necessary to access most API endpoints.

3

https://developer.tdameritrade.com/user/register
https://developer.tdameritrade.com/user/me/apps/add
https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#web-application-flow
https://developer.tdameritrade.com/user/me/apps

tda-api

1.2 Installing tda-api

This section outlines the installation process for client users. For developers, check out Contributing to tda-api.

The recommended method of installing tda-api is using pip from PyPi in a virtualenv. First create a virtualenv in
your project diretory. Here we assume your virtualenv is called my-venv:

pip install virtualenv
virtualenv -v my-venv
source my-venv/bin/activate

You are now ready to install tda-api:

pip install tda-api

That’s it! You’re done! You can verify the install succeeded by importing the package:

import tda

If this succeeded, you’re ready to move on to Authentication and Client Creation.

4 Chapter 1. Getting Started

https://pypi.org/project/tda-api/
https://virtualenv.pypa.io/en/latest/

CHAPTER 2

Authentication and Client Creation

By now, you should have followed the instructions in Getting Started and are ready to start making API calls. Read
this page to learn how to get over the last remaining hurdle: OAuth authentication.

Before we begin, however, note that this guide is meant to users who want to run applications on their own machines,
without distributing them to others. If you plan on distributing your app, or if you plan on running it on a server and
allowing access to other users, this login flow is not for you.

2.1 OAuth Refresher

This section is purely for the curious. If you already understand OAuth (wow, congrats) or if you don’t care and just
want to use this package as fast as possible, feel free to skip this section. If you encounter any weird behavior, this
section may help you understand that’s going on.

Webapp authentication is a complex beast. The OAuth protocol was created to allow applications to access one
anothers’ APIs securely and with the minimum level of trust possible. A full treatise on this topic is well beyond the
scope of this guide, but in order to alleviate some of the confusion and complexity that seems to surround this part of
the API, let’s give a quick explanation of how OAuth works in the context of TD Ameritrade’s API.

The first thing to understand is that the OAuth webapp flow was created to allow client-side applications consisting of
a webapp frontend and a remotely hosted backend to interact with a third party API. Unlike the backend application
flow, in which the remotely hosted backend has a secret which allows it to access the API on its own behalf, the
webapp flow allows either the webapp frontend or the remotely host backend to access the API on behalf of its users.

If you’ve ever installed a GitHub, Facebook, Twitter, GMail, etc. app, you’ve seen this flow. You click on the “install”
link, a login window pops up, you enter your password, and you’re presented with a page that asks whether you want
to grant the app access to your account.

Here’s what’s happening under the hood. The window that pops up is the authentication URL, which opens a login
page for the target API. The aim is to allow the user to input their username and password without the webapp frontend
or the remotely hosted backend seeing it. On web browsers, this is accomplished using the browser’s refusal to send
credentials from one domain to another.

5

https://www.reddit.com/r/algotrading/comments/brohdx/td_ameritrade_api_auth_error/
https://www.reddit.com/r/algotrading/comments/alk7yh/tdameritrade_api_works/
https://www.reddit.com/r/algotrading/comments/914q22/successful_access_to_td_ameritrade_api/
https://www.reddit.com/r/algotrading/comments/c81vzq/td_ameritrade_api_access_2019_guide/
https://www.reddit.com/r/algotrading/comments/a588l1/td_ameritrade_restful_api_beginner_questions/
https://www.reddit.com/r/algotrading/comments/brsnsm/how_to_automate_td_ameritrade_api_auth_code_for/
https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#backend-application-flow
https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#backend-application-flow
https://developer.tdameritrade.com/content/simple-auth-local-apps

tda-api

Once login here is successful, the API replies with a redirect to a URL that the remotely hosted backend controls. This
is the callback URL. This redirect will contain a code which securely identifies the user to the API, embedded in the
query of the request.

You might think that code is enough to access the API, and it would be if the API author were willing to sacrifice
long-term security. The exact reasons why it doesn’t work involve some deep security topics like robustness against
replay attacks and session duration limitation, but we’ll skip them here.

This code is useful only for fetching a token from the authentication endpoint. This token is what we want: a secure
secret which the client can use to access API endpoints, and can be refreshed over time.

If you’ve gotten this far and your head isn’t spinning, you haven’t been paying attention. Security-sensitive protocols
can be very complicated, and you should never build your own implementation. Fortunately there exist very robust
implementations of this flow, and tda-api’s authentication module makes using them easy.

2.2 Fetching a Token and Creating a Client

tda-api provides an easy implementation of the client-side login flow in the auth package. It uses a selenium
webdriver to open the TD Ameritrade authentication URL, take your login credentials, catch the post-login redirect,
and fetch a reusable token. It returns a fully-configured Client Wrapper, ready to send API calls. It also handles token
refreshing, and writes updated tokens to the token file.

tda.auth.client_from_login_flow(webdriver, api_key, redirect_url, token_path, redi-
rect_wait_time_seconds=0.1)

Uses the webdriver to perform an OAuth webapp login flow and creates a client wrapped around the result-
ing token. The client will be configured to refresh the token as necessary, writing each updated version to
token_path.

Parameters

• webdriver – selenium webdriver which will be used to perform the login flow.

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

• redirect_url – Your TD Ameritrade application’s redirect URL. Note this must exactly
match the value you’ve entered in your application configuration, otherwise login will fail
with a security error.

• token_path – Path to which the new token will be written. Updated tokens will be written
to this path as well.

Once you have a token written on disk, you can reuse it without going through the login flow again.

tda.auth.client_from_token_file(token_path, api_key)
Returns a session from the specified token path. The session will perform an auth refresh as needed. It will also
update the token on disk whenever appropriate.

Parameters

• token_path – Path to the token. Updated tokens will be written to this path.

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

The following is a convenient wrapper around these two methods, calling each when appropriate:

tda.auth.easy_client(api_key, redirect_uri, token_path, webdriver_func=None)
Convenient wrapper around client_from_login_flow() and client_from_token_file(). If
token_path exists, loads the token from it. Otherwise open a login flow to fetch a new token. Returns a
client configured to refresh the token to token_path.

Parameters

6 Chapter 2. Authentication and Client Creation

https://developer.tdameritrade.com/authentication/apis/post/token-0
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io

tda-api

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

• redirect_url – Your TD Ameritrade application’s redirect URL. Note this must exactly
match the value you’ve entered in your application configuration, otherwise login will fail
with a security error.

• token_path – Path that new token will be read from and written to. Updated tokens will
be written to this path as well.

• webdriver_func – Function that returns a webdriver for use in fetching a new token.
Will only be called if the token file cannot be found.

2.3 Troubleshooting

As simple as it seems, this process is complex and mistakes are easy to make. This section outlines some of the more
common issues you might encounter. If you find yourself dealing with something that isn’t listed here, or if you try
the suggested remedies and are still seeing issues, please file a ticket on our issues page.

2.3.1 “A third-party application may be attempting to make unauthorized access to
your account”

One attack on improperly implemented OAuth login flows involves tricking a user into submitting their credentials for
a real app and then redirecting to a malicious web server (remember the GET request to the redirect URI contains all
credentials required to access the user’s account). This is especially pernicious because from the user’s perspective,
they see a real login window and probably never realize they’ve been sent to a malicious server, especially if the
landing page is designed to resemble the target API’s landing page.

TD Ameritrade correctly prevents this attack by refusing to allow a login if the redirect URI does not exactly match
the redirect URI with which the app is configured. If you make any mistake in setting your API key or redirect URI,
you’ll see this instead of a login page:

If this happens, you almost certainly copied your API key or redirect URI incorrectly. Go back to your application list
and copy-paste it again.

2.3.2 tda-api Hangs After Successful Login

After opening the login window, tda-api loops and waits until the webdriver’s current URL starts with the given
redirect URI:

callback_url = ''
while not callback_url.startswith(redirect_url):

callback_url = webdriver.current_url
time.sleep(redirect_wait_time_seconds)

2.3. Troubleshooting 7

https://github.com/alexgolec/tda-api/issues
https://developer.tdameritrade.com/user/me/apps

tda-api

Usually, it would be impossible for a successful post-login callback to not start with the callback URI, but there’s one
major exception: when the callback URI starts with http. Behavior varies by browser and app configuration, but a
callback URI starting with http can sometimes be redirected to one starting with https, in which case tda-api
will never notice the redirect.

If this is happening to you, consider changing your callback URI to use https instead of http. Not only will it
make your life easier here, but it is extremely bad practice to send credentials like this over an unencrypted channel
like that provided by http.

8 Chapter 2. Authentication and Client Creation

CHAPTER 3

Client Wrapper

A naive, unopinionated wrapper around the TD Ameritrade HTTP API. This client provides access to all endpoints of
the API in as easy and direct a way as possible. For example, here is how you can fetch the past 20 years of data for
Apple stock:

from tda.auth import easy_client
from tda.client import Client

c = easy_client(
api_key='APIKEY',
redirect_uri='https://localhost',
token_path='/tmp/token.pickle')

resp = c.get_price_history('AAPL',
period_type=Client.PriceHistory.PeriodType.YEAR,
period=Client.PriceHistory.Period.TWENTY_YEARS,
frequency_type=Client.PriceHistory.FrequencyType.DAILY,
frequency=Client.PriceHistory.Frequency.DAILY)

assert resp.ok
history = resp.json()

Note we we create a new client using the auth package as described in Authentication and Client Creation. Creating
a client directly is possible, but not recommended.

3.1 Calling Conventions

Function parameters are categorized as either required or optional. Required parameters, such as 'AAPL' in the
example above, are passed as positional arguments. Optional parameters, like period_type and the rest, are passed
as keyword arguments.

Parameters which have special values recognized by the API are represented by Python enums. This is because the
API rejects requests which pass unrecognized values, and this enum wrapping is provided as a convenient mechanism
to avoid consternation caused by accidentally passing an unrecognized value.

9

https://developer.tdameritrade.com/apis
https://docs.python.org/3/library/enum.html

tda-api

By default, passing values other than the required enums will raise a ValueError. If you believe the API accepts
a value that isn’t supported here, you can use set_enforce_enums to disable this behavior at your own risk. If
you do find a supported value that isn’t listed here, please open an issue describing it or submit a PR adding the new
functionality.

3.2 Return Values

All methods return a response object generated under the hood by the requests module. For a full listing of what’s
possible, read that module’s documentation. Most if not all users can simply use the following pattern:

r = client.some_endpoint()
assert r.ok, r.raise_for_status()
data = r.json()

The API indicates errors using the response status code, and this pattern will raise the appropriate exception if the
response is not a success. The data can be fetched by calling the .json() method.

Note: Because the author has no relationship whatsoever with TD Ameritrade, this document makes no effort to de-
scribe the structure of the returned JSON objects. TDA might change them at any time, at which point this document
will become silently out of date. Instead, each of the methods described below contains a link to the official docu-
mentation. For endpoints that return meaningful JSON objects, it includes a JSON schema which describes the return
value. Please use that documentation or your own experimentation when figuring out how to use the data returned by
this API.

3.3 Creating a New Client

99.9% of users should not create their own clients, and should instead follow the instructions outlined in Authentication
and Client Creation. For those brave enough to build their own, the constructor looks like this:

Client.__init__(api_key, session, *, enforce_enums=True)
Create a new client with the given API key and session. Set enforce_enums=False to disable strict input type
checking.

3.4 Orders

3.4.1 Placing New Orders

Placing new orders can be a complicated task. The Client.place_order() method is used to create all orders,
from equities to options. The precise order type is defined by a complex order spec. TDA provides some example
order specs to illustrate the process and provides a schema in the place order documentation, but beyond that we’re on
our own.

tda-api includes some helpers, described in Creating Order Specifications, which provide an incomplete utility for
creating various order types. While it only scratches the surface of what’s possible, we encourage you to use that
module instead of creating your own order specs.

Client.place_order(account_id, order_spec)
Place an order for a specific account. If order creation was successful, the response will contain the ID of the
generated order. See tda.utils.Utils.extract_order_id() for more details. Official documenta-
tion.

10 Chapter 3. Client Wrapper

https://requests.readthedocs.io/en/master/
https://developer.tdameritrade.com/content/place-order-samples
https://developer.tdameritrade.com/content/place-order-samples
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0

tda-api

3.4.2 Accessing Existing Orders

Client.get_orders_by_path(account_id, *, max_results=None, from_entered_datetime=None,
to_entered_datetime=None, status=None, statuses=None)

Orders for a specific account. At most one of status and statuses may be set. Official documentation.

Parameters

• max_results – The maximum number of orders to retrieve.

• from_entered_datetime – Specifies that no orders entered before this time should be
returned. Date must be within 60 days from today’s date. toEnteredTime must also be
set.

• to_entered_datetime – Specifies that no orders entered after this time should be
returned. fromEnteredTime must also be set.

• status – Restrict query to orders with this status. See Order.Status for options.

• statuses – Restrict query to orders with any of these statuses. See Order.Status for
options.

Client.get_orders_by_query(*, max_results=None, from_entered_datetime=None,
to_entered_datetime=None, status=None, statuses=None)

Orders for all linked accounts. At most one of status and statuses may be set. Official documentation.

Parameters

• max_results – The maximum number of orders to retrieve.

• from_entered_datetime – Specifies that no orders entered before this time should be
returned. Date must be within 60 days from today’s date. toEnteredTime must also be
set.

• to_entered_datetime – Specifies that no orders entered after this time should be
returned. fromEnteredTime must also be set.

• status – Restrict query to orders with this status. See Order.Status for options.

• statuses – Restrict query to orders with any of these statuses. See Order.Status for
options.

Client.get_order(order_id, account_id)
Get a specific order for a specific account by its order ID. Official documentation.

class tda.client.Client.Order

class Status
Order statuses passed to get_orders_by_path() and get_orders_by_query()

ACCEPTED = 'ACCEPTED'

AWAITING_CONDITION = 'AWAITING_CONDITION'

AWAITING_MANUAL_REVIEW = 'AWAITING_MANUAL_REVIEW'

AWAITING_PARENT_ORDER = 'AWAITING_PARENT_ORDER'

AWAITING_UR_OUR = 'AWAITING_UR_OUR'

CANCELLED = 'CANCELLED'

EXPIRED = 'EXPIRED'

FILLED = 'FILLED'

3.4. Orders 11

https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/get/orders-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0

tda-api

PENDING_ACTIVATION = 'PENDING_ACTIVATION'

PENDING_CANCEL = 'PENDING_CANCEL'

PENDING_REPLACE = 'PENDING_REPLACE'

QUEUED = 'QUEUED'

REJECTED = 'REJECTED'

REPLACED = 'REPLACED'

WORKING = 'WORKING'

3.4.3 Editing Existing Orders

Endpoints for canceling and replacing existing orders. Annoyingly, while these endpoints require an order ID, it seems
that when placing new orders the API does not return any metadata about the new order. As a result, if you want to
cancel or replace an order after you’ve created it, you must search for it using the methods described in Accessing
Existing Orders.

Client.cancel_order(order_id, account_id)
Cancel a specific order for a specific account. Official documentation.

Client.replace_order(account_id, order_id, order_spec)
Replace an existing order for an account. The existing order will be replaced by the new order. Once replaced,
the old order will be canceled and a new order will be created. Official documentation.

3.5 Account Info

These methods provide access to useful information about accounts. An incomplete list of the most interesting bits:

• Account balances, including available trading balance

• Positions

• Order history

See the official documentation for each method for a complete response schema.

Client.get_account(account_id, *, fields=None)
Account balances, positions, and orders for a specific account. Official documentation.

Parameters fields – Balances displayed by default, additional fields can be added here by adding
values from Account.Fields.

Client.get_accounts(*, fields=None)
Account balances, positions, and orders for all linked accounts. Official documentation.

Parameters fields – Balances displayed by default, additional fields can be added here by adding
values from Account.Fields.

class tda.client.Client.Account

class Fields
Account fields passed to get_account() and get_accounts()

ORDERS = 'orders'

POSITIONS = 'positions'

12 Chapter 3. Client Wrapper

https://developer.tdameritrade.com/account-access/apis/delete/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0
https://developer.tdameritrade.com/account-access/apis/put/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts-0

tda-api

3.6 Instrument Info

Note: symbol fundamentals (P/E ratios, number of shares outstanding, dividend yield, etc.) is available using the
Instrument.Projection.FUNDAMENTAL projection.

Client.search_instruments(symbols, projection)
Search or retrieve instrument data, including fundamental data. Official documentation.

Parameters projection – Query type. See Instrument.Projection for options.

Client.get_instrument(cusip)
Get an instrument by CUSIP. Official documentation.

class tda.client.Client.Instrument

class Projection
Search query type for search_instruments(). See the official documentation for details on the
semantics of each.

DESC_REGEX = 'desc-regex'

DESC_SEARCH = 'desc-search'

FUNDAMENTAL = 'fundamental'

SYMBOL_REGEX = 'symbol-regex'

SYMBOL_SEARCH = 'symbol-search'

3.7 Option Chains

Unfortunately, option chains are well beyond the ability of your humble author. You are encouraged to read the official
API documentation to learn more.

If you are knowledgeable enough to write something more substantive here, please follow the instructions in Con-
tributing to tda-api to send in a patch.

Client.get_option_chain(symbol, *, contract_type=None, strike_count=None, in-
clude_quotes=None, strategy=None, interval=None, strike=None,
strike_range=None, strike_from_date=None, strike_to_date=None,
volatility=None, underlying_price=None, interest_rate=None,
days_to_expiration=None, exp_month=None, option_type=None)

Get option chain for an optionable Symbol. Official documentation.

Parameters

• contract_type – Type of contracts to return in the chain. See Options.
ContractType for choices.

• strike_count – The number of strikes to return above and below the at-the-money price.

• include_quotes – Include quotes for options in the option chain?

• strategy – If passed, returns a Strategy Chain. See Options.Strategy for choices.

• interval – Strike interval for spread strategy chains (see strategy param).

• strike – Return options only at this strike price.

• strike_range – Return options for the given range. See Options.StrikeRange
for choices.

3.6. Instrument Info 13

https://developer.tdameritrade.com/instruments/apis/get/instruments
https://developer.tdameritrade.com/instruments/apis/get/instruments/%7Bcusip%7D
https://developer.tdameritrade.com/instruments/apis/get/instruments
https://developer.tdameritrade.com/option-chains/apis/get/marketdata/chains

tda-api

• strike_from_date – Only return expirations after this date. For strategies, expira-
tion refers to the nearest term expiration in the strategy. Accepts datetime.date and
datetime.datetime.

• strike_to_date – Only return expirations before this date. For strategies, expira-
tion refers to the nearest term expiration in the strategy. Accepts datetime.date and
datetime.datetime.

• volatility – Volatility to use in calculations. Applies only to ANALYTICAL strategy
chains.

• underlying_price – Underlying price to use in calculations. Applies only to
ANALYTICAL strategy chains.

• interest_rate – Interest rate to use in calculations. Applies only to ANALYTICAL
strategy chains.

• days_to_expiration – Days to expiration to use in calculations. Applies only to
ANALYTICAL strategy chains

• exp_month – Return only options expiring in the specified month. See Options.
ExpirationMonth for choices.

• option_type – Types of options to return. See Options.Type for choices.

class tda.client.Client.Options

class ContractType
An enumeration.

ALL = 'ALL'

CALL = 'CALL'

PUT = 'PUT'

class ExpirationMonth
An enumeration.

APRIL = 'APR'

AUGUST = 'AUG'

DECEMBER = 'DEC'

FEBRUARY = 'FEB'

JANUARY = 'JAN'

JULY = 'JUL'

JUN = 'JUN'

MARCH = 'MAR'

MAY = 'MAY'

NOVEMBER = 'NOV'

OCTOBER = 'OCT'

SEPTEMBER = 'SEP'

class Strategy
An enumeration.

14 Chapter 3. Client Wrapper

tda-api

ANALYTICAL = 'ANALYTICAL'

BUTTERFLY = 'BUTTERFLY'

CALENDAR = 'CALENDAR'

COLLAR = 'COLLAR'

CONDOR = 'CONDOR'

COVERED = 'COVERED'

DIAGONAL = 'DIAGONAL'

ROLL = 'ROLL'

SINGLE = 'SINGLE'

STRADDLE = 'STRADDLE'

STRANGLE = 'STRANGLE'

VERTICAL = 'VERTICAL'

class StrikeRange
An enumeration.

ALL = 'ALL'

IN_THE_MONEY = 'ITM'

NEAR_THE_MONEY = 'NTM'

OUT_OF_THE_MONEY = 'OTM'

STRIKES_ABOVE_MARKET = 'SAK'

STRIKES_BELOW_MARKET = 'SBK'

STRIKES_NEAR_MARKET = 'SNK'

class Type
An enumeration.

ALL = 'ALL'

NON_STANDARD = 'NS'

STANDARD = 'S'

3.8 Price History

Fetching price history is somewhat complicated due to the fact that only certain combinations of parameters are valid.
To avoid accidentally making it impossible to send valid requests, this method performs no validation on its parameters.
If you are receiving empty requests or other weird return values, see the official documentation for more details.

Client.get_price_history(symbol, *, period_type=None, period=None, frequency_type=None,
frequency=None, start_datetime=None, end_datetime=None,
need_extended_hours_data=None)

Get price history for a symbol. Official documentation.

Parameters

• period_type – The type of period to show.

3.8. Price History 15

https://developer.tdameritrade.com/price-history/apis/get/marketdata/%7Bsymbol%7D/pricehistory

tda-api

• period – The number of periods to show. Should not be provided if start_datetime
and end_datetime.

• frequency_type – The type of frequency with which a new candle is formed.

• frequency – The number of the frequencyType to be included in each candle.

• start_datetime – End date. Default is previous trading day.

• end_datetime – Start date.

• need_extended_hours_data – If true, return extended hours data. Otherwise return
regular market hours only.

class tda.client.Client.PriceHistory

class Frequency
An enumeration.

DAILY = 1

EVERY_FIFTEEN_MINUTES = 15

EVERY_FIVE_MINUTES = 5

EVERY_MINUTE = 1

EVERY_TEN_MINUTES = 10

EVERY_THIRTY_MINUTES = 30

MONTHLY = 1

WEEKLY = 1

class FrequencyType
An enumeration.

DAILY = 'daily'

MINUTE = 'minute'

MONTHLY = 'monthly'

WEEKLY = 'weekly'

class Period
An enumeration.

FIFTEEN_YEARS = 15

FIVE_DAYS = 5

FIVE_YEARS = 5

FOUR_DAYS = 4

ONE_DAY = 1

ONE_MONTH = 1

ONE_YEAR = 1

SIX_MONTHS = 6

TEN_DAYS = 10

TEN_YEARS = 10

16 Chapter 3. Client Wrapper

tda-api

THREE_DAYS = 3

THREE_MONTHS = 3

THREE_YEARS = 3

TWENTY_YEARS = 20

TWO_DAYS = 2

TWO_MONTHS = 2

TWO_YEARS = 2

YEAR_TO_DATE = 1

class PeriodType
An enumeration.

DAY = 'day'

MONTH = 'month'

YEAR = 'year'

YEAR_TO_DATE = 'ytd'

3.9 Current Quotes

Client.get_quote(symbol)
Get quote for a symbol. Note due to limitations in URL encoding, this method is not recommended for instru-
ments with symbols symbols containing non-alphanumeric characters, for example as futures like /ES. To get
quotes for those symbols, use Client.get_quotes().

Official documentation.

Client.get_quotes(symbols)
Get quote for a symbol. This method supports all symbols, including those containing non-alphanumeric char-
acters like /ES. Official documentation.

3.10 Other Endpoints

Note If your account limited to delayed quotes, these quotes will also be delayed.

3.10.1 Transaction History

Client.get_transaction(account_id, transaction_id)
Transaction for a specific account. Official documentation.

Client.get_transactions(account_id, *, transaction_type=None, symbol=None, start_date=None,
end_date=None)

Transaction for a specific account. Official documentation.

Parameters

• transaction_type – Only transactions with the specified type will be returned.

• symbol – Only transactions with the specified symbol will be returned.

3.9. Current Quotes 17

https://developer.tdameritrade.com/quotes/apis/get/marketdata/%7Bsymbol%7D/quotes
https://developer.tdameritrade.com/quotes/apis/get/marketdata/quotes
https://developer.tdameritrade.com/transaction-history/apis/get/accounts/%7BaccountId%7D/transactions/%7BtransactionId%7D-0
https://developer.tdameritrade.com/transaction-history/apis/get/accounts/%7BaccountId%7D/transactions-0

tda-api

• start_date – Only transactions after this date will be returned. Note the maximum date
range is one year. Accepts datetime.date and datetime.datetime.

• end_date – Only transactions before this date will be returned Note the maximum date
range is one year. Accepts datetime.date and datetime.datetime.

class tda.client.Client.Transactions

class TransactionType
An enumeration.

ADVISORY_FEES = 'ADVISORY_FEES'

ALL = 'ALL'

BUY_ONLY = 'BUY_ONLY'

CASH_IN_OR_CASH_OUT = 'CASH_IN_OR_CASH_OUT'

CHECKING = 'CHECKING'

DIVIDEND = 'DIVIDEND'

INTEREST = 'INTEREST'

OTHER = 'OTHER'

SELL_ONLY = 'SELL_ONLY'

TRADE = 'TRADE'

3.10.2 Saved Orders

Client.create_saved_order(account_id, order_spec)
Save an order for a specific account. Official documentation.

Client.delete_saved_order(account_id, order_id)
Delete a specific saved order for a specific account. Official documentation.

Client.get_saved_order(account_id, order_id)
Specific saved order by its ID, for a specific account. Official documentation.

Client.get_saved_orders_by_path(account_id)
Saved orders for a specific account. Official documentation.

Client.replace_saved_order(account_id, order_id, order_spec)
Replace an existing saved order for an account. The existing saved order will be replaced by the new order.
Official documentation.

3.10.3 Market Hours

Client.get_hours_for_multiple_markets(markets, date)
Retrieve market hours for specified markets. Official documentation.

Parameters

• markets – Market to return hours for. Iterable of Markets.

• date – The date for which market hours information is requested. Accepts datetime.
date and datetime.datetime.

18 Chapter 3. Client Wrapper

https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/savedorders-0
https://developer.tdameritrade.com/account-access/apis/delete/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/savedorders-0
https://developer.tdameritrade.com/account-access/apis/put/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0
https://developer.tdameritrade.com/market-hours/apis/get/marketdata/hours

tda-api

Client.get_hours_for_single_market(market, date)
Retrieve market hours for specified single market. Official documentation.

Parameters

• markets – Market to return hours for. Instance of Markets.

• date – The date for which market hours information is requested. Accepts datetime.
date and datetime.datetime.

class tda.client.Client.Markets
Values for get_hours_for_multiple_markets() and get_hours_for_single_market().

BOND = 'BOND'

EQUITY = 'EQUITY'

FOREX = 'FOREX'

FUTURE = 'FUTURE'

OPTION = 'OPTION'

3.10.4 Movers

Client.get_movers(index, direction, change)
Top 10 (up or down) movers by value or percent for a particular market. Official documentation.

Parameters

• direction – See Movers.Direction

• change – See Movers.Change

class tda.client.Client.Movers

class Change
Values for get_movers()

PERCENT = 'percent'

VALUE = 'value'

class Direction
Values for get_movers()

DOWN = 'down'

UP = 'up'

3.10.5 User Info and Preferences

Client.get_preferences(account_id)
Preferences for a specific account. Official documentation.

Client.get_user_principals(fields=None)
User Principal details. Official documentation.

Client.update_preferences(account_id, preferences)
Update preferences for a specific account.

3.10. Other Endpoints 19

https://developer.tdameritrade.com/market-hours/apis/get/marketdata/%7Bmarket%7D/hours
https://developer.tdameritrade.com/movers/apis/get/marketdata/%7Bindex%7D/movers
https://developer.tdameritrade.com/user-principal/apis/get/accounts/%7BaccountId%7D/preferences-0
https://developer.tdameritrade.com/user-principal/apis/get/userprincipals-0

tda-api

Please note that the directOptionsRouting and directEquityRouting values cannot be modified via this operation.
Official documentation.

class tda.client.Client.UserPrincipals

class Fields
An enumeration.

PREFERENCES = 'preferences'

STREAMER_CONNECTION_INFO = 'streamerConnectionInfo'

STREAMER_SUBSCRIPTION_KEYS = 'streamerSubscriptionKeys'

SURROGATE_IDS = 'surrogateIds'

3.10.6 Watchlists

Client.create_watchlist(account_id, watchlist_spec)
‘Create watchlist for specific account.This method does not verify that the symbol or asset type are valid. Official
documentation.

Client.delete_watchlist(account_id, watchlist_id)
Delete watchlist for a specific account. Official documentation.

Client.get_watchlist(account_id, watchlist_id)
Specific watchlist for a specific account. Official documentation.

Client.get_watchlists_for_multiple_accounts()
All watchlists for all of the user’s linked accounts. Official documentation.

Client.get_watchlists_for_single_account(account_id)
All watchlists of an account. Official documentation.

Client.replace_watchlist(account_id, watchlist_id, watchlist_spec)
Replace watchlist for a specific account. This method does not verify that the symbol or asset type are valid.
Official documentation.

Client.update_watchlist(account_id, watchlist_id, watchlist_spec)
Partially update watchlist for a specific account: change watchlist name, add to the beginning/end of a watchlist,
update or delete items in a watchlist. This method does not verify that the symbol or asset type are valid. Official
documentation.

20 Chapter 3. Client Wrapper

https://developer.tdameritrade.com/user-principal/apis/put/accounts/%7BaccountId%7D/preferences-0
https://developer.tdameritrade.com/watchlist/apis/post/accounts/%7BaccountId%7D/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/post/accounts/%7BaccountId%7D/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/delete/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/get/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/get/accounts/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/get/accounts/%7BaccountId%7D/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/put/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/patch/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/patch/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0

CHAPTER 4

Creating Order Specifications

The Client.place_order() method expects a rather complex JSON object that describes the desired order.
TDA provides some example order specs to illustrate the process and provides a schema in the place order documen-
tation, but beyond that we’re on our own.

The tda.orders module provides an incomplete set of helpers for building these order specs. The aim is to make
it impossible to build an invalid JSON object. For example, here is how you might use this module to place a market
order for ten shares of Apple common stock:

from tda.orders import EquityOrderBuilder, Duration, Session

builder = EquityOrderBuilder('AAPL', 10)
builder.set_instruction(EquityOrderBuilder.Instruction.SELL)
builder.set_order_type(EquityOrderBuilder.OrderType.MARKET)
builder.set_duration(Duration.DAY)
builder.set_session(Session.NORMAL)

client = ... # Get a client however you see fit
account_id = 12345678

resp = client.place_order(account_id, builder.build())
assert resp.ok

4.1 Common Values

class tda.orders.Duration
An enumeration.

DAY = 'DAY'

FILL_OR_KILL = 'FILL_OR_KILL'

GOOD_TILL_CANCEL = 'GOOD_TILL_CANCEL'

21

https://developer.tdameritrade.com/content/place-order-samples
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0

tda-api

class tda.orders.Session
An enumeration.

AM = 'AM'

NORMAL = 'NORMAL'

PM = 'PM'

SEAMESS = 'SEAMLESS'

exception tda.orders.InvalidOrderException
Raised when attempting to build an incomplete order

4.2 Equity Orders

class tda.orders.EquityOrderBuilder(symbol, quantity)
Helper class to construct equity orders.

__init__(symbol, quantity)
Create an order for the given symbol and quantity. Note all unspecified parameters must be set prior to
building the order spec.

Parameters

• symbol – Symbol for the order

• quantity – Quantity of the order

class Instruction
Order instruction

BUY = 'BUY'

SELL = 'SELL'

class OrderType
Order type

LIMIT = 'LIMIT'

MARKET = 'MARKET'

build()
Build the order spec.

Raises InvalidOrderException – if the order is not fully specified

matches(order)
Takes a real object, as might be returned from the TD Ameritrade API, and indicates whether this order
object matches it. Returns true if the given order if the given order could have been placed by calling
Client.place_order() with this order.

This method may be called on incomplete orders builders (builders whose build() method would fail if
called. In such a case, unset values are ignored and have no effect on filtering.

set_duration(duration)
Set the order duration

set_instruction(instruction)
Set the order instruction

22 Chapter 4. Creating Order Specifications

tda-api

set_order_type(order_type)
Set the order type

set_price(price)
Set the order price. Must be set for LIMIT orders.

set_session(session)
Set the order’s session

4.2. Equity Orders 23

tda-api

24 Chapter 4. Creating Order Specifications

CHAPTER 5

Utilities

This section describes miscellaneous utility methods provided by tda-api. All utilities are presented under the
Utils class:

class tda.utils.Utils(client, account_id)
Helper for placing orders on equities. Provides easy-to-use implementations for common tasks such as market
and limit orders.

__init__(client, account_id)
Creates a new Utils instance. For convenience, this object assumes the user wants to work with a single
account ID at a time.

set_account_id(account_id)
Set the account ID used by this Utils instance.

5.1 Get the Most Recent Order

For successfully placed orders, tda.client.Client.place_order() returns the ID of the newly created
order, encoded in the headers. This method inspects the response and extracts the order ID from the contents, if
it’s there. This order ID can then be used to monitor or modify the order as described in the Client documentation.
Example usage:

Assume client and order already exist and are valid
account_id = 123456
r = client.place_order(account_id, order)
assert r.ok, raise_for_status()
order_id = Utils(account_id, client).extract_order_id(r)
assert order_id is not None

Utils.extract_order_id(place_order_response)
Attempts to extract the order ID from a response object returned by Client.place_order(). Return None
if the order location is not contained in the response.

25

tda-api

Parameters place_order_response – Order response as returned by Client.
place_order(). Note this method requires that the order was successful.

Raises ValueError – if the order was not succesful or if the order’s account ID is not equal to the
account ID set in this Utils object.

For orders that were rejected or whose order responses for whatever other reason might not contain the order ID, we
can do a best-effort lookup using this method:

Utils.find_most_recent_order(*, symbol=None, quantity=None, instruction=None, or-
der_type=None, lookback_window=datetime.timedelta(days=1))

When placing orders, the TDA API does not always return the order ID of the newly placed order, especially
when the order was rejected. This means if we want to make extra sure of its status, we have to take a guess as
to which order we just placed. This method simplifies things by returning the most recently-placed order with
the given order signature.

Note: This method cannot guarantee that the calling process was the one which placed an order. This means that
if there are multiple sources of orders, this method may return an order which was placed by another process.

Parameters

• symbol – Limit search to orders for this symbol.

• quantity – Limit search to orders of this quantity.

• instruction – Limit search to orders with this instruction. See tda.orders.
EquityOrderBuilder.Instruction

• order_type – Limit search to orders with this order type. See tda.orders.
EquityOrderBuilder.OrderType

• lookback_window – Limit search to orders entered less than this long ago. Note the
TDA API does not provide orders older than 60 days.

26 Chapter 5. Utilities

CHAPTER 6

Example Application

To illustrate some of the functionality of tda-api, here is an example application that finds stocks that pay a dividend
during the month of your birthday and purchases one of each.

from urllib.request import urlopen

import atexit
import datetime
import dateutil
import sys
import tda

API_KEY = 'YOUR_API_KEY@AMER.OAUTHAP'
REDIRECT_URI = 'YOUR_REDIRECT_URI'
TOKEN_PATH = '/YOUR/TOKEN/PATH'
YOUR_BIRTHDAY = datetime.datetime(year=1969, month=4, day=20)

def make_webdriver():
Import selenium here because it's slow to import
from selenium import webdriver

driver = webdriver.Chrome()
atexit.register(lambda: driver.quit())
return driver

Create a new client
client = tda.auth.easy_client(

API_KEY,
REDIRECT_URI,
TOKEN_PATH,
make_webdriver)

Load S&P 500 composition from documentation

(continues on next page)

27

tda-api

(continued from previous page)

sp500 = urlopen(
'https://tda-api.readthedocs.io/en/latest/_static/sp500.txt').read().decode().

→˓split()

Fetch fundamentals for all symbols and filter out the ones with ex-dividend
dates in the future and dividend payment dates on your birth month. Note we
perform the fetch in two calls because the API places an upper limit on the
number of symbols you can fetch at once.
today = datetime.datetime.today()
birth_month_dividends = []
for s in (sp500[:250], sp500[250:]):

r = client.search_instruments(
s, tda.client.Client.Instrument.Projection.FUNDAMENTAL)

assert r.ok, r.raise_for_status()

for symbol, f in r.json().items():

Parse ex-dividend date
ex_div_string = f['fundamental']['dividendDate']
if not ex_div_string.strip():

continue
ex_dividend_date = dateutil.parser.parse(ex_div_string)

Parse payment date
pay_date_string = f['fundamental']['dividendPayDate']
if not pay_date_string.strip():

continue
pay_date = dateutil.parser.parse(pay_date_string)

Check dates
if (ex_dividend_date > today

and pay_date.month == YOUR_BIRTHDAY.month):
birth_month_dividends.append(symbol)

if not birth_month_dividends:
print('Sorry, no stocks are paying out in your birth month yet. This is ',

'most likely because the dividends haven\'t been announced yet. ',
'Try again closer to your birthday.')

sys.exit(1)

Purchase one share of each the stocks that pay in your birthday month.
account_id = int(input(

'Input your TDA account number to place orders (<Ctrl-C> to quit): '))
for symbol in birth_month_dividends:

print('Buying one share of', symbol)

Build the order spec and place the order
builder = tda.orders.EquityOrderBuilder(symbol, 1)
builder.set_instruction(builder.Instruction.BUY)
builder.set_order_type(builder.OrderType.MARKET)
builder.set_duration(tda.orders.Duration.DAY)
builder.set_session(tda.orders.Session.NORMAL)
order = builder.build()

r = client.place_order(account_id, order)
assert r.ok, r.raise_for_status()

28 Chapter 6. Example Application

CHAPTER 7

Contributing to tda-api

Fixing a bug? Adding a feature? Just cleaning up for the sake of cleaning up? Great! No improvement is too small for
me, and I’m always happy to take pull requests. Read this guide to learn how to set up your environment so you can
contribute.

7.1 Setting up the Dev Environment

Dependencies are listed in the requirements.txt file. These development requirements are distinct from the require-
ments listed in setup.py and include some additional packages around testing, documentation generation, etc.

Before you install anything, I highly recommend setting up a virtualenv so you don’t pollute your system installation
directories:

pip install virtualenv
virtualenv -v virtualenv
source virtualenv/build/activate

Next, install project requirements:

pip install -r requirements.txt

Finally, verify everything works by running tests:

make test

At this point you can make your changes.

29

tda-api

7.2 Development Guidelines

7.2.1 Test your changes

This project aims for high test coverage. All changes must be properly tested, and we will accept no PRs that lack
appropriate unit testing. We also expect existing tests to pass. You can run your tests using:

make test

7.2.2 Document your code

Documentation is how users learn to use your code, and no feature is complete without a full description of how to use
it. If your PR changes external-facing interfaces, or if it alters semantics, the changes must be thoroughly described
in the docstrings of the affected components. If your change adds a substantial new module, a new section in the
documentation may be justified.

Documentation is built using Sphinx. You can build the documentation using the Makefile.sphinx makefile. For
example you can build the HTML documentation like so:

make -f Makefile.sphinx

30 Chapter 7. Contributing to tda-api

https://www.sphinx-doc.org/en/master/

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

Disclaimer: tda-api is an unofficial API wrapper. It is in no way endorsed by or affiliated with TD Ameritrade or any
associated organization. Make sure to read and understand the terms of service of the underlying API before using
this package. This authors accept no responsibility for any damage that might stem from use of this package. See the
LICENSE file for more details.

31

tda-api

32 Chapter 8. Indices and tables

Python Module Index

t
tda.auth, 4
tda.client, 8

33

tda-api

34 Python Module Index

Index

Symbols
__init__() (tda.client.Client method), 10
__init__() (tda.orders.EquityOrderBuilder method),

22
__init__() (tda.utils.Utils method), 25

A
ACCEPTED (tda.client.Client.Order.Status attribute), 11
Account (class in tda.client.Client), 12
Account.Fields (class in tda.client.Client), 12
ADVISORY_FEES (tda.client.Client.Transactions.TransactionType

attribute), 18
ALL (tda.client.Client.Options.ContractType attribute),

14
ALL (tda.client.Client.Options.StrikeRange attribute), 15
ALL (tda.client.Client.Options.Type attribute), 15
ALL (tda.client.Client.Transactions.TransactionType at-

tribute), 18
AM (tda.orders.Session attribute), 22
ANALYTICAL (tda.client.Client.Options.Strategy at-

tribute), 14
APRIL (tda.client.Client.Options.ExpirationMonth at-

tribute), 14
AUGUST (tda.client.Client.Options.ExpirationMonth at-

tribute), 14
AWAITING_CONDITION

(tda.client.Client.Order.Status attribute),
11

AWAITING_MANUAL_REVIEW
(tda.client.Client.Order.Status attribute),
11

AWAITING_PARENT_ORDER
(tda.client.Client.Order.Status attribute),
11

AWAITING_UR_OUR (tda.client.Client.Order.Status at-
tribute), 11

B
BOND (tda.client.Client.Markets attribute), 19

build() (tda.orders.EquityOrderBuilder method), 22
BUTTERFLY (tda.client.Client.Options.Strategy at-

tribute), 15
BUY (tda.orders.EquityOrderBuilder.Instruction at-

tribute), 22
BUY_ONLY (tda.client.Client.Transactions.TransactionType

attribute), 18

C
CALENDAR (tda.client.Client.Options.Strategy attribute),

15
CALL (tda.client.Client.Options.ContractType attribute),

14
cancel_order() (tda.client.Client method), 12
CANCELLED (tda.client.Client.Order.Status attribute),

11
CASH_IN_OR_CASH_OUT

(tda.client.Client.Transactions.TransactionType
attribute), 18

CHECKING (tda.client.Client.Transactions.TransactionType
attribute), 18

client_from_login_flow() (in module tda.auth),
6

client_from_token_file() (in module tda.auth),
6

COLLAR (tda.client.Client.Options.Strategy attribute), 15
CONDOR (tda.client.Client.Options.Strategy attribute), 15
COVERED (tda.client.Client.Options.Strategy attribute),

15
create_saved_order() (tda.client.Client method),

18
create_watchlist() (tda.client.Client method), 20

D
DAILY (tda.client.Client.PriceHistory.Frequency at-

tribute), 16
DAILY (tda.client.Client.PriceHistory.FrequencyType at-

tribute), 16
DAY (tda.client.Client.PriceHistory.PeriodType at-

tribute), 17

35

tda-api

DAY (tda.orders.Duration attribute), 21
DECEMBER (tda.client.Client.Options.ExpirationMonth

attribute), 14
delete_saved_order() (tda.client.Client method),

18
delete_watchlist() (tda.client.Client method), 20
DESC_REGEX (tda.client.Client.Instrument.Projection

attribute), 13
DESC_SEARCH (tda.client.Client.Instrument.Projection

attribute), 13
DIAGONAL (tda.client.Client.Options.Strategy attribute),

15
DIVIDEND (tda.client.Client.Transactions.TransactionType

attribute), 18
DOWN (tda.client.Client.Movers.Direction attribute), 19
Duration (class in tda.orders), 21

E
easy_client() (in module tda.auth), 6
EQUITY (tda.client.Client.Markets attribute), 19
EquityOrderBuilder (class in tda.orders), 22
EquityOrderBuilder.Instruction (class in

tda.orders), 22
EquityOrderBuilder.OrderType (class in

tda.orders), 22
EVERY_FIFTEEN_MINUTES

(tda.client.Client.PriceHistory.Frequency
attribute), 16

EVERY_FIVE_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 16

EVERY_MINUTE (tda.client.Client.PriceHistory.Frequency
attribute), 16

EVERY_TEN_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 16

EVERY_THIRTY_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 16

EXPIRED (tda.client.Client.Order.Status attribute), 11
extract_order_id() (tda.utils.Utils method), 25

F
FEBRUARY (tda.client.Client.Options.ExpirationMonth

attribute), 14
FIFTEEN_YEARS (tda.client.Client.PriceHistory.Period

attribute), 16
FILL_OR_KILL (tda.orders.Duration attribute), 21
FILLED (tda.client.Client.Order.Status attribute), 11
find_most_recent_order() (tda.utils.Utils

method), 26
FIVE_DAYS (tda.client.Client.PriceHistory.Period at-

tribute), 16

FIVE_YEARS (tda.client.Client.PriceHistory.Period at-
tribute), 16

FOREX (tda.client.Client.Markets attribute), 19
FOUR_DAYS (tda.client.Client.PriceHistory.Period at-

tribute), 16
FUNDAMENTAL (tda.client.Client.Instrument.Projection

attribute), 13
FUTURE (tda.client.Client.Markets attribute), 19

G
get_account() (tda.client.Client method), 12
get_accounts() (tda.client.Client method), 12
get_hours_for_multiple_markets()

(tda.client.Client method), 18
get_hours_for_single_market()

(tda.client.Client method), 18
get_instrument() (tda.client.Client method), 13
get_movers() (tda.client.Client method), 19
get_option_chain() (tda.client.Client method), 13
get_order() (tda.client.Client method), 11
get_orders_by_path() (tda.client.Client method),

11
get_orders_by_query() (tda.client.Client

method), 11
get_preferences() (tda.client.Client method), 19
get_price_history() (tda.client.Client method),

15
get_quote() (tda.client.Client method), 17
get_quotes() (tda.client.Client method), 17
get_saved_order() (tda.client.Client method), 18
get_saved_orders_by_path() (tda.client.Client

method), 18
get_transaction() (tda.client.Client method), 17
get_transactions() (tda.client.Client method), 17
get_user_principals() (tda.client.Client

method), 19
get_watchlist() (tda.client.Client method), 20
get_watchlists_for_multiple_accounts()

(tda.client.Client method), 20
get_watchlists_for_single_account()

(tda.client.Client method), 20
GOOD_TILL_CANCEL (tda.orders.Duration attribute),

21

I
IN_THE_MONEY (tda.client.Client.Options.StrikeRange

attribute), 15
Instrument (class in tda.client.Client), 13
Instrument.Projection (class in

tda.client.Client), 13
INTEREST (tda.client.Client.Transactions.TransactionType

attribute), 18
InvalidOrderException, 22

36 Index

tda-api

J
JANUARY (tda.client.Client.Options.ExpirationMonth

attribute), 14
JULY (tda.client.Client.Options.ExpirationMonth at-

tribute), 14
JUN (tda.client.Client.Options.ExpirationMonth at-

tribute), 14

L
LIMIT (tda.orders.EquityOrderBuilder.OrderType at-

tribute), 22

M
MARCH (tda.client.Client.Options.ExpirationMonth at-

tribute), 14
MARKET (tda.orders.EquityOrderBuilder.OrderType at-

tribute), 22
Markets (class in tda.client.Client), 19
matches() (tda.orders.EquityOrderBuilder method),

22
MAY (tda.client.Client.Options.ExpirationMonth at-

tribute), 14
MINUTE (tda.client.Client.PriceHistory.FrequencyType

attribute), 16
MONTH (tda.client.Client.PriceHistory.PeriodType

attribute), 17
MONTHLY (tda.client.Client.PriceHistory.Frequency at-

tribute), 16
MONTHLY (tda.client.Client.PriceHistory.FrequencyType

attribute), 16
Movers (class in tda.client.Client), 19
Movers.Change (class in tda.client.Client), 19
Movers.Direction (class in tda.client.Client), 19

N
NEAR_THE_MONEY (tda.client.Client.Options.StrikeRange

attribute), 15
NON_STANDARD (tda.client.Client.Options.Type at-

tribute), 15
NORMAL (tda.orders.Session attribute), 22
NOVEMBER (tda.client.Client.Options.ExpirationMonth

attribute), 14

O
OCTOBER (tda.client.Client.Options.ExpirationMonth

attribute), 14
ONE_DAY (tda.client.Client.PriceHistory.Period at-

tribute), 16
ONE_MONTH (tda.client.Client.PriceHistory.Period at-

tribute), 16
ONE_YEAR (tda.client.Client.PriceHistory.Period

attribute), 16
OPTION (tda.client.Client.Markets attribute), 19

Options (class in tda.client.Client), 14
Options.ContractType (class in tda.client.Client),

14
Options.ExpirationMonth (class in

tda.client.Client), 14
Options.Strategy (class in tda.client.Client), 14
Options.StrikeRange (class in tda.client.Client),

15
Options.Type (class in tda.client.Client), 15
Order (class in tda.client.Client), 11
Order.Status (class in tda.client.Client), 11
ORDERS (tda.client.Client.Account.Fields attribute), 12
OTHER (tda.client.Client.Transactions.TransactionType

attribute), 18
OUT_OF_THE_MONEY (tda.client.Client.Options.StrikeRange

attribute), 15

P
PENDING_ACTIVATION

(tda.client.Client.Order.Status attribute),
11

PENDING_CANCEL (tda.client.Client.Order.Status at-
tribute), 12

PENDING_REPLACE (tda.client.Client.Order.Status at-
tribute), 12

PERCENT (tda.client.Client.Movers.Change attribute),
19

place_order() (tda.client.Client method), 10
PM (tda.orders.Session attribute), 22
POSITIONS (tda.client.Client.Account.Fields attribute),

12
PREFERENCES (tda.client.Client.UserPrincipals.Fields

attribute), 20
PriceHistory (class in tda.client.Client), 16
PriceHistory.Frequency (class in

tda.client.Client), 16
PriceHistory.FrequencyType (class in

tda.client.Client), 16
PriceHistory.Period (class in tda.client.Client),

16
PriceHistory.PeriodType (class in

tda.client.Client), 17
PUT (tda.client.Client.Options.ContractType attribute),

14

Q
QUEUED (tda.client.Client.Order.Status attribute), 12

R
REJECTED (tda.client.Client.Order.Status attribute), 12
replace_order() (tda.client.Client method), 12
replace_saved_order() (tda.client.Client

method), 18

Index 37

tda-api

replace_watchlist() (tda.client.Client method),
20

REPLACED (tda.client.Client.Order.Status attribute), 12
ROLL (tda.client.Client.Options.Strategy attribute), 15

S
SEAMESS (tda.orders.Session attribute), 22
search_instruments() (tda.client.Client method),

13
SELL (tda.orders.EquityOrderBuilder.Instruction at-

tribute), 22
SELL_ONLY (tda.client.Client.Transactions.TransactionType

attribute), 18
SEPTEMBER (tda.client.Client.Options.ExpirationMonth

attribute), 14
Session (class in tda.orders), 21
set_account_id() (tda.utils.Utils method), 25
set_duration() (tda.orders.EquityOrderBuilder

method), 22
set_instruction()

(tda.orders.EquityOrderBuilder method),
22

set_order_type() (tda.orders.EquityOrderBuilder
method), 22

set_price() (tda.orders.EquityOrderBuilder
method), 23

set_session() (tda.orders.EquityOrderBuilder
method), 23

SINGLE (tda.client.Client.Options.Strategy attribute), 15
SIX_MONTHS (tda.client.Client.PriceHistory.Period at-

tribute), 16
STANDARD (tda.client.Client.Options.Type attribute), 15
STRADDLE (tda.client.Client.Options.Strategy attribute),

15
STRANGLE (tda.client.Client.Options.Strategy attribute),

15
STREAMER_CONNECTION_INFO

(tda.client.Client.UserPrincipals.Fields at-
tribute), 20

STREAMER_SUBSCRIPTION_KEYS
(tda.client.Client.UserPrincipals.Fields at-
tribute), 20

STRIKES_ABOVE_MARKET
(tda.client.Client.Options.StrikeRange at-
tribute), 15

STRIKES_BELOW_MARKET
(tda.client.Client.Options.StrikeRange at-
tribute), 15

STRIKES_NEAR_MARKET
(tda.client.Client.Options.StrikeRange at-
tribute), 15

SURROGATE_IDS (tda.client.Client.UserPrincipals.Fields
attribute), 20

SYMBOL_REGEX (tda.client.Client.Instrument.Projection
attribute), 13

SYMBOL_SEARCH (tda.client.Client.Instrument.Projection
attribute), 13

T
tda.auth (module), 4
tda.client (module), 8
TEN_DAYS (tda.client.Client.PriceHistory.Period

attribute), 16
TEN_YEARS (tda.client.Client.PriceHistory.Period at-

tribute), 16
THREE_DAYS (tda.client.Client.PriceHistory.Period at-

tribute), 16
THREE_MONTHS (tda.client.Client.PriceHistory.Period

attribute), 17
THREE_YEARS (tda.client.Client.PriceHistory.Period

attribute), 17
TRADE (tda.client.Client.Transactions.TransactionType

attribute), 18
Transactions (class in tda.client.Client), 18
Transactions.TransactionType (class in

tda.client.Client), 18
TWENTY_YEARS (tda.client.Client.PriceHistory.Period

attribute), 17
TWO_DAYS (tda.client.Client.PriceHistory.Period

attribute), 17
TWO_MONTHS (tda.client.Client.PriceHistory.Period at-

tribute), 17
TWO_YEARS (tda.client.Client.PriceHistory.Period at-

tribute), 17

U
UP (tda.client.Client.Movers.Direction attribute), 19
update_preferences() (tda.client.Client method),

19
update_watchlist() (tda.client.Client method), 20
UserPrincipals (class in tda.client.Client), 20
UserPrincipals.Fields (class in

tda.client.Client), 20
Utils (class in tda.utils), 25

V
VALUE (tda.client.Client.Movers.Change attribute), 19
VERTICAL (tda.client.Client.Options.Strategy attribute),

15

W
WEEKLY (tda.client.Client.PriceHistory.Frequency at-

tribute), 16
WEEKLY (tda.client.Client.PriceHistory.FrequencyType

attribute), 16
WORKING (tda.client.Client.Order.Status attribute), 12

38 Index

tda-api

Y
YEAR (tda.client.Client.PriceHistory.PeriodType at-

tribute), 17
YEAR_TO_DATE (tda.client.Client.PriceHistory.Period

attribute), 17
YEAR_TO_DATE (tda.client.Client.PriceHistory.PeriodType

attribute), 17

Index 39

	Getting Started
	TD Ameritrade API Access
	Installing tda-api

	Authentication and Client Creation
	OAuth Refresher
	Fetching a Token and Creating a Client
	Troubleshooting

	Client Wrapper
	Calling Conventions
	Return Values
	Creating a New Client
	Orders
	Account Info
	Instrument Info
	Option Chains
	Price History
	Current Quotes
	Other Endpoints

	Creating Order Specifications
	Common Values
	Equity Orders

	Utilities
	Get the Most Recent Order

	Example Application
	Contributing to tda-api
	Setting up the Dev Environment
	Development Guidelines

	Indices and tables
	Python Module Index
	Index

