
tda-api

May 20, 2021

Contents:

1 Getting Started 3
1.1 TD Ameritrade API Access . 3
1.2 Installing tda-api . 4
1.3 Getting Help . 4

2 Authentication and Client Creation 5
2.1 OAuth Refresher . 5
2.2 Fetching a Token and Creating a Client . 6
2.3 Advanced Functionality . 7
2.4 Troubleshooting . 8

3 HTTP Client 11
3.1 Asyncio Support . 11
3.2 Calling Conventions . 12
3.3 Return Values . 12
3.4 Creating a New Client . 13
3.5 Orders . 13
3.6 Account Info . 15
3.7 Instrument Info . 15
3.8 Option Chain . 16
3.9 Price History . 18
3.10 Current Quotes . 20
3.11 Other Endpoints . 20

4 Streaming Client 25
4.1 Use Overview . 26
4.2 Enabling Real-Time Data Access . 29
4.3 OHLCV Charts . 29
4.4 Level One Quotes . 31
4.5 Level Two Order Book . 42
4.6 Time of Sale . 43
4.7 News Headlines . 45
4.8 Account Activity . 46
4.9 Troubleshooting . 46

5 Order Templates 49
5.1 Using These Templates . 49

i

5.2 Equity Templates . 50
5.3 Options Templates . 50
5.4 Utility Methods . 53
5.5 What happened to EquityOrderBuilder? . 54

6 OrderBuilder Reference 55
6.1 Optional: Order Specification Introduction . 55
6.2 Constructing OrderBuilder Objects from Historical Orders . 58
6.3 OrderBuilder Reference . 58

7 Utilities 69
7.1 Get the Most Recent Order . 69

8 Example Application 71

9 Getting Help 73
9.1 Asking for Help on Discord . 73
9.2 Reporting a Bug . 74

10 Community-Contributed Functionality 77
10.1 Custom JSON Decoding . 77

11 Contributing to tda-api 79
11.1 Setting up the Dev Environment . 79
11.2 Development Guidelines . 80

12 Indices and tables 81

Python Module Index 83

Index 85

ii

tda-api

Contents: 1

https://github.com/alexgolec/tda-api
https://www.patreon.com/alexgolec
https://discord.gg/M3vjtHj

tda-api

2 Contents:

CHAPTER 1

Getting Started

Welcome to tda-api! Read this page to learn how to install and configure your first TD Ameritrade Python appli-
cation.

1.1 TD Ameritrade API Access

All API calls to the TD Ameritrade API require an API key. Before we do anything with tda-api, you’ll need to
create a developer account with TD Ameritrade and register an application. By the end of this section, you’ll have
accomplished the three prerequisites for using tda-api:

1. Create an application.

2. Choose and save the callback URL (important for authenticating).

3. Receive an API key.

You can create a developer account here. The instructions from here on out assume you’re logged in, so make sure
you log into the developer site after you’ve created your account.

Next, you’ll want to create an application. The app name and purpose aren’t particularly important right now, but the
callback URL is. In a nutshell, the OAuth login flow that TD Ameritrade uses works by opening a TD Ameritrade
login page, securely collecting credentials on their domain, and then sending an HTTP request to the callback URL
with the token in the URL query.

How you use to choose your callback URL depends on whether and how you plan on distributing your app. If you’re
writing an app for your own personal use, and plan to run entirely on your own machine, use https://localhost.
If you plan on running on a server and having users send requests to you, use a URL you own, such as a dedicated
endpoint on your domain.

Once your app is created and approved, you will receive your API key, also known as the Client ID. This will be
visible in TDA’s app listing page. Record this key, since it is necessary to access most API endpoints.

3

https://developer.tdameritrade.com/user/register
https://developer.tdameritrade.com/user/me/apps/add
https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#web-application-flow
https://developer.tdameritrade.com/user/me/apps

tda-api

1.2 Installing tda-api

This section outlines the installation process for client users. For developers, check out Contributing to tda-api.

The recommended method of installing tda-api is using pip from PyPi in a virtualenv. First create a virtualenv in
your project directory. Here we assume your virtualenv is called my-venv:

pip install virtualenv
virtualenv -v my-venv
source my-venv/bin/activate

You are now ready to install tda-api:

pip install tda-api

That’s it! You’re done! You can verify the install succeeded by importing the package:

import tda

If this succeeded, you’re ready to move on to Authentication and Client Creation.

Note that if you are using a virtual environment and switch to a new terminal your virtual environment will not be
active in the new terminal, and you need to run the activate command again. If you want to disable the loaded virtual
environment in the same terminal window, use the command:

deactivate

1.3 Getting Help

If you are ever stuck, feel free to join our Discord server to ask questions, get advice, and chat with like-minded people.
If you feel you’ve found a bug, you can fill out a bug report.

4 Chapter 1. Getting Started

https://pypi.org/project/tda-api/
https://virtualenv.pypa.io/en/latest/
https://discord.gg/M3vjtHj

CHAPTER 2

Authentication and Client Creation

By now, you should have followed the instructions in Getting Started and are ready to start making API calls. Read
this page to learn how to get over the last remaining hurdle: OAuth authentication.

Before we begin, however, note that this guide is meant to users who want to run applications on their own machines,
without distributing them to others. If you plan on distributing your app, or if you plan on running it on a server and
allowing access to other users, this login flow is not for you.

2.1 OAuth Refresher

This section is purely for the curious. If you already understand OAuth (wow, congrats) or if you don’t care and just
want to use this package as fast as possible, feel free to skip this section. If you encounter any weird behavior, this
section may help you understand what’s going on.

Webapp authentication is a complex beast. The OAuth protocol was created to allow applications to access one
anothers’ APIs securely and with the minimum level of trust possible. A full treatise on this topic is well beyond the
scope of this guide, but in order to alleviate some of the confusion and complexity that seems to surround this part of
the API, let’s give a quick explanation of how OAuth works in the context of TD Ameritrade’s API.

The first thing to understand is that the OAuth webapp flow was created to allow client-side applications consisting of
a webapp frontend and a remotely hosted backend to interact with a third party API. Unlike the backend application
flow, in which the remotely hosted backend has a secret which allows it to access the API on its own behalf, the
webapp flow allows either the webapp frontend or the remotely host backend to access the API on behalf of its users.

If you’ve ever installed a GitHub, Facebook, Twitter, GMail, etc. app, you’ve seen this flow. You click on the “install”
link, a login window pops up, you enter your password, and you’re presented with a page that asks whether you want
to grant the app access to your account.

Here’s what’s happening under the hood. The window that pops up is the authentication URL, which opens a login
page for the target API. The aim is to allow the user to input their username and password without the webapp frontend
or the remotely hosted backend seeing it. On web browsers, this is accomplished using the browser’s refusal to send
credentials from one domain to another.

5

https://www.reddit.com/r/algotrading/comments/brohdx/td_ameritrade_api_auth_error/
https://www.reddit.com/r/algotrading/comments/alk7yh/tdameritrade_api_works/
https://www.reddit.com/r/algotrading/comments/914q22/successful_access_to_td_ameritrade_api/
https://www.reddit.com/r/algotrading/comments/c81vzq/td_ameritrade_api_access_2019_guide/
https://www.reddit.com/r/algotrading/comments/a588l1/td_ameritrade_restful_api_beginner_questions/
https://www.reddit.com/r/algotrading/comments/brsnsm/how_to_automate_td_ameritrade_api_auth_code_for/
https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#backend-application-flow
https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#backend-application-flow
https://developer.tdameritrade.com/content/simple-auth-local-apps

tda-api

Once login here is successful, the API replies with a redirect to a URL that the remotely hosted backend controls. This
is the callback URL. This redirect will contain a code which securely identifies the user to the API, embedded in the
query of the request.

You might think that code is enough to access the API, and it would be if the API author were willing to sacrifice
long-term security. The exact reasons why it doesn’t work involve some deep security topics like robustness against
replay attacks and session duration limitation, but we’ll skip them here.

This code is useful only for fetching a token from the authentication endpoint. This token is what we want: a secure
secret which the client can use to access API endpoints, and can be refreshed over time.

If you’ve gotten this far and your head isn’t spinning, you haven’t been paying attention. Security-sensitive protocols
can be very complicated, and you should never build your own implementation. Fortunately there exist very robust
implementations of this flow, and tda-api’s authentication module makes using them easy.

2.2 Fetching a Token and Creating a Client

tda-api provides an easy implementation of the client-side login flow in the auth package. It uses a selenium
webdriver to open the TD Ameritrade authentication URL, take your login credentials, catch the post-login redirect,
and fetch a reusable token. It returns a fully-configured HTTP Client, ready to send API calls. It also handles token
refreshing, and writes updated tokens to the token file.

These functions are webdriver-agnostic, meaning you can use whatever webdriver-supported browser you have avail-
able on your system. You can find information about available webdriver on the Selenium documentation.

tda.auth.client_from_login_flow(webdriver, api_key, redirect_url, token_path, redi-
rect_wait_time_seconds=0.1, max_waits=3000, asyn-
cio=False, token_write_func=None)

Uses the webdriver to perform an OAuth webapp login flow and creates a client wrapped around the result-
ing token. The client will be configured to refresh the token as necessary, writing each updated version to
token_path.

Parameters

• webdriver – selenium webdriver which will be used to perform the login flow.

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

• redirect_url – Your TD Ameritrade application’s redirect URL. Note this must exactly
match the value you’ve entered in your application configuration, otherwise login will fail
with a security error.

• token_path – Path to which the new token will be written. If the token file already exists,
it will be overwritten with a new one. Updated tokens will be written to this path as well.

If for some reason you cannot open a web browser, such as when running in a cloud environment, the following
function will guide you through the process of manually creating a token by copy-pasting relevant URLs.

tda.auth.client_from_manual_flow(api_key, redirect_url, token_path, asyncio=False, to-
ken_write_func=None)

Walks the user through performing an OAuth login flow by manually copy-pasting URLs, and returns a client
wrapped around the resulting token. The client will be configured to refresh the token as necessary, writing each
updated version to token_path.

Note this method is more complicated and error prone, and should be avoided in favor of
client_from_login_flow() wherever possible.

Parameters

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

6 Chapter 2. Authentication and Client Creation

https://developer.tdameritrade.com/authentication/apis/post/token-0
https://selenium-python.readthedocs.io/
https://www.selenium.dev/documentation/en/getting_started_with_webdriver/browsers/
https://selenium-python.readthedocs.io

tda-api

• redirect_url – Your TD Ameritrade application’s redirect URL. Note this must exactly
match the value you’ve entered in your application configuration, otherwise login will fail
with a security error.

• token_path – Path to which the new token will be written. If the token file already exists,
it will be overwritten with a new one. Updated tokens will be written to this path as well.

Once you have a token written on disk, you can reuse it without going through the login flow again.

tda.auth.client_from_token_file(token_path, api_key, asyncio=False)
Returns a session from an existing token file. The session will perform an auth refresh as needed. It will also
update the token on disk whenever appropriate.

Parameters

• token_path – Path to an existing token. Updated tokens will be written to this path. If
you do not yet have a token, use client_from_login_flow() or easy_client()
to create one.

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

The following is a convenient wrapper around these two methods, calling each when appropriate:

tda.auth.easy_client(api_key, redirect_uri, token_path, webdriver_func=None, asyncio=False)
Convenient wrapper around client_from_login_flow() and client_from_token_file(). If
token_path exists, loads the token from it. Otherwise open a login flow to fetch a new token. Returns a
client configured to refresh the token to token_path.

Reminder: You should never create the token file yourself or modify it in any way. If token_path refers to
an existing file, this method will assume that file is valid token and will attempt to parse it.

Parameters

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

• redirect_url – Your TD Ameritrade application’s redirect URL. Note this must exactly
match the value you’ve entered in your application configuration, otherwise login will fail
with a security error.

• token_path – Path that new token will be read from and written to. If If this file exists,
this method will assume it’s valid and will attempt to parse it as a token. If it does not, this
method will create a new one using client_from_login_flow(). Updated tokens
will be written to this path as well.

• webdriver_func – Function that returns a webdriver for use in fetching a new token.
Will only be called if the token file cannot be found.

2.3 Advanced Functionality

The default token fetcher functions are designed for ease of use. They make some common assumptions, most notably
a writable filesystem, which are valid for 99% of users. However, some very specialized users, for instance those
hoping to deploy tda-api in serverless settings, require some more advanced functionality. This method provides
the most flexible facility for fetching tokens possible.

Important: This is an extremely advanced method. If you read the documentation and think anything other than “oh
wow, this is exactly what I’ve been looking for,” you don’t need this function. Please use the other helpers instead.

tda.auth.client_from_access_functions(api_key, token_read_func, token_write_func, asyn-
cio=False)

Returns a session from an existing token file, using the accessor methods to read and write the token. This is

2.3. Advanced Functionality 7

tda-api

an advanced method for users who do not have access to a standard writable filesystem, such as users of AWS
Lambda and other serverless products who must persist token updates on non-filesystem places, such as S3.
99.9% of users should not use this function.

Users are free to customize how they represent the token file. In theory, since they have direct access to the
token, they can get creative about how they store it and fetch it. In practice, it is highly recommended to simply
accept the token object and use pickle to serialize and deserialize it, without inspecting it in any way.

Parameters

• api_key – Your TD Ameritrade application’s API key, also known as the client ID.

• token_read_func – Function that takes no arguments and returns a token object.

• token_write_func – Function that a token object and writes it. Will be called whenever
the token is updated, such as when it is refreshed.

2.4 Troubleshooting

As simple as it seems, this process is complex and mistakes are easy to make. This section outlines some of the more
common issues you might encounter. If you find yourself dealing with something that isn’t listed here, or if you try
the suggested remedies and are still seeing issues, see the Getting Help page. You can also join our Discord server to
ask questions.

2.4.1 “A third-party application may be attempting to make unauthorized access to
your account”

One attack on improperly implemented OAuth login flows involves tricking a user into submitting their credentials for
a real app and then redirecting to a malicious web server (remember the GET request to the redirect URI contains all
credentials required to access the user’s account). This is especially pernicious because from the user’s perspective,
they see a real login window and probably never realize they’ve been sent to a malicious server, especially if the
landing page is designed to resemble the target API’s landing page.

TD Ameritrade correctly prevents this attack by refusing to allow a login if the redirect URI does not exactly match
the client ID/API key and redirect URI with which the app is configured. If you make any mistake in setting your API
key or redirect URI, you’ll see this instead of a login page:

If this happens, you almost certainly copied your API key or redirect URI incorrectly. Go back to your application list
and copy-paste the information again. Don’t manually type it out, don’t visually spot-check it. Copy-paste it. Make
sure to include details like trailing slashes, https protol specifications, and port numbers.

Note tda-api does not require you to suffix your client ID with @AMER.OAUTHAP. It will accept it if you do so, but
if you make even the slightest mistake without noticing, you will end up seeing this error and will be very confused.
We recommend simply passing the “Client ID” field in as the API key parameter without any embellishment, and
letting the library handle the rest.

8 Chapter 2. Authentication and Client Creation

https://discord.gg/M3vjtHj
https://developer.tdameritrade.com/user/me/apps

tda-api

2.4.2 tda-api Hangs After Successful Login

After opening the login window, tda-api loops and waits until the webdriver’s current URL starts with the given
redirect URI:

callback_url = ''
while not callback_url.startswith(redirect_url):

callback_url = webdriver.current_url
time.sleep(redirect_wait_time_seconds)

Usually, it would be impossible for a successful post-login callback to not start with the callback URI, but there’s one
major exception: when the callback URI starts with http. Behavior varies by browser and app configuration, but a
callback URI starting with http can sometimes be redirected to one starting with https, in which case tda-api
will never notice the redirect.

If this is happening to you, consider changing your callback URI to use https instead of http. Not only will it
make your life easier here, but it is extremely bad practice to send credentials like this over an unencrypted channel
like that provided by http.

2.4.3 Token Parsing Failures

tda-api handles creating and refreshing tokens. Simply put, the user should never create or modify the token file. If
you are experiencing parse errors when accessing the token file or getting exceptions when accessing it, it’s probably
because you created it yourself or modified it. If you’re experiencing token parsing issues, remember that:

1. You should never create the token file yourself. If you don’t already have a token, you should pass a nonexistent
file path to client_from_login_flow() or easy_client(). If the file already exists, these methods
assume it’s a valid token file. If the file does not exist, they will go through the login flow to create one.

2. You should never modify the token file. The token file is automatically managed by tda-api, and modifying
it will almost certainly break it.

3. You should never share the token file. If the token file is shared between applications, one of them will beat the
other to refreshing, locking the slower one out of using tda-api.

If you didn’t do any of this and are still seeing issues using a token file that you’re confident is valid, please file a
ticket. Just remember, never share your token file, not even with tda-api developers. Sharing the token file is as
dangerous as sharing your TD Ameritrade username and password.

2.4.4 What If I Can’t Use a Browser?

Launching a browser can be inconvenient in some situations, most notably in containerized applications running on a
cloud provider. tda-api supports two alternatives to creating tokens by opening a web browser.

Firstly, the manual login flow flow allows you to go through the login flow on a different machine than the one on
which tda-api is running. Instead of starting the web browser and automatically opening the relevant URLs, this
flow allows you to manually copy-paste around the URLs. It’s a little more cumbersome, but it has no dependency on
selenium.

Alterately, you can take advantage of the fact that token files are portable. Once you create a token on one machine,
such as one where you can open a web browser, you can easily copy that token file to another machine, such as your
application in the cloud. However, make sure you don’t use the same token on two machines. It is recommended to
delete the token created on the browser-capable machine as soon as it is copied to its destination.

2.4. Troubleshooting 9

https://github.com/alexgolec/tda-api/issues
https://github.com/alexgolec/tda-api/issues

tda-api

10 Chapter 2. Authentication and Client Creation

CHAPTER 3

HTTP Client

A naive, unopinionated wrapper around the TD Ameritrade HTTP API. This client provides access to all endpoints of
the API in as easy and direct a way as possible. For example, here is how you can fetch the past 20 years of data for
Apple stock:

Do not attempt to use more than one Client object per token file, as this will likely cause issues with the under-
lying OAuth2 session management

from tda.auth import easy_client
from tda.client import Client

c = easy_client(
api_key='APIKEY',
redirect_uri='https://localhost',
token_path='/tmp/token.pickle')

resp = c.get_price_history('AAPL',
period_type=Client.PriceHistory.PeriodType.YEAR,
period=Client.PriceHistory.Period.TWENTY_YEARS,
frequency_type=Client.PriceHistory.FrequencyType.DAILY,
frequency=Client.PriceHistory.Frequency.DAILY)

assert resp.status_code == httpx.codes.OK
history = resp.json()

Note we we create a new client using the auth package as described in Authentication and Client Creation. Creating
a client directly is possible, but not recommended.

3.1 Asyncio Support

An asynchronous variant is available through a keyword to the client constructor. This allows for higher-performance
API usage, at the cost of slightly increased application complexity.

11

https://developer.tdameritrade.com/apis

tda-api

from tda.auth import easy_client
from tda.client import Client

async def main():
c = easy_client(

api_key='APIKEY',
redirect_uri='https://localhost',
token_path='/tmp/token.pickle',
asyncio=True)

resp = await c.get_price_history('AAPL',
period_type=Client.PriceHistory.PeriodType.YEAR,
period=Client.PriceHistory.Period.TWENTY_YEARS,
frequency_type=Client.PriceHistory.FrequencyType.DAILY,
frequency=Client.PriceHistory.Frequency.DAILY)

assert resp.status_code == httpx.codes.OK
history = resp.json()

if __name__ == '__main__':
import asyncio
asyncio.run_until_complete(main())

For more examples, please see the examples/async directory in GitHub.

3.2 Calling Conventions

Function parameters are categorized as either required or optional. Required parameters, such as 'AAPL' in the
example above, are passed as positional arguments. Optional parameters, like period_type and the rest, are passed
as keyword arguments.

Parameters which have special values recognized by the API are represented by Python enums. This is because the
API rejects requests which pass unrecognized values, and this enum wrapping is provided as a convenient mechanism
to avoid consternation caused by accidentally passing an unrecognized value.

By default, passing values other than the required enums will raise a ValueError. If you believe the API accepts
a value that isn’t supported here, you can use set_enforce_enums to disable this behavior at your own risk. If
you do find a supported value that isn’t listed here, please open an issue describing it or submit a PR adding the new
functionality.

3.3 Return Values

All methods return a response object generated under the hood by the HTTPX module. For a full listing of what’s
possible, read that module’s documentation. Most if not all users can simply use the following pattern:

r = client.some_endpoint()
assert r.status_code == httpx.codes.OK, r.raise_for_status()
data = r.json()

The API indicates errors using the response status code, and this pattern will raise the appropriate exception if the
response is not a success. The data can be fetched by calling the .json() method.

This data will be pure python data structures which can be directly accessed. You can also use your favorite data
analysis library’s dataframe format using the appropriate library. For instance you can create a pandas dataframe using
its conversion method.

12 Chapter 3. HTTP Client

https://docs.python.org/3/library/enum.html
https://www.python-httpx.org/quickstart/#response-content
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_dict.html

tda-api

Note: Because the author has no relationship whatsoever with TD Ameritrade, this document makes no effort to de-
scribe the structure of the returned JSON objects. TDA might change them at any time, at which point this document
will become silently out of date. Instead, each of the methods described below contains a link to the official docu-
mentation. For endpoints that return meaningful JSON objects, it includes a JSON schema which describes the return
value. Please use that documentation or your own experimentation when figuring out how to use the data returned by
this API.

3.4 Creating a New Client

99.9% of users should not create their own clients, and should instead follow the instructions outlined in Authentication
and Client Creation. For those brave enough to build their own, the constructor looks like this:

Client.__init__(api_key, session, *, enforce_enums=True, token_metadata=None)
Create a new client with the given API key and session. Set enforce_enums=False to disable strict input type
checking.

3.5 Orders

3.5.1 Placing New Orders

Placing new orders can be a complicated task. The Client.place_order() method is used to create all orders,
from equities to options. The precise order type is defined by a complex order spec. TDA provides some example
order specs to illustrate the process and provides a schema in the place order documentation, but beyond that we’re on
our own.

tda-api includes some helpers, described in Order Templates, which provide an incomplete utility for creating
various order types. While it only scratches the surface of what’s possible, we encourage you to use that module
instead of creating your own order specs.

Client.place_order(account_id, order_spec)
Place an order for a specific account. If order creation was successful, the response will contain the ID of
the generated order. See tda.utils.Utils.extract_order_id() for more details. Note unlike most
methods in this library, responses for successful calls to this method typically do not contain json() data, and
attempting to extract it will likely result in an exception.

Official documentation.

3.5.2 Accessing Existing Orders

Client.get_orders_by_path(account_id, *, max_results=None, from_entered_datetime=None,
to_entered_datetime=None, status=None, statuses=None)

Orders for a specific account. At most one of status and statuses may be set. Official documentation.

Parameters

• max_results – The maximum number of orders to retrieve.

• from_entered_datetime – Specifies that no orders entered before this time should be
returned. Date must be within 60 days from today’s date. toEnteredTime must also be
set.

• to_entered_datetime – Specifies that no orders entered after this time should be
returned. fromEnteredTime must also be set.

3.4. Creating a New Client 13

https://developer.tdameritrade.com/content/place-order-samples
https://developer.tdameritrade.com/content/place-order-samples
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/orders-0

tda-api

• status – Restrict query to orders with this status. See Order.Status for options.

• statuses – Restrict query to orders with any of these statuses. See Order.Status for
options.

Client.get_orders_by_query(*, max_results=None, from_entered_datetime=None,
to_entered_datetime=None, status=None, statuses=None)

Orders for all linked accounts. At most one of status and statuses may be set. Official documentation.

Parameters

• max_results – The maximum number of orders to retrieve.

• from_entered_datetime – Specifies that no orders entered before this time should be
returned. Date must be within 60 days from today’s date. toEnteredTime must also be
set.

• to_entered_datetime – Specifies that no orders entered after this time should be
returned. fromEnteredTime must also be set.

• status – Restrict query to orders with this status. See Order.Status for options.

• statuses – Restrict query to orders with any of these statuses. See Order.Status for
options.

Client.get_order(order_id, account_id)
Get a specific order for a specific account by its order ID. Official documentation.

class tda.client.Client.Order

class Status
Order statuses passed to get_orders_by_path() and get_orders_by_query()

ACCEPTED = 'ACCEPTED'

AWAITING_CONDITION = 'AWAITING_CONDITION'

AWAITING_MANUAL_REVIEW = 'AWAITING_MANUAL_REVIEW'

AWAITING_PARENT_ORDER = 'AWAITING_PARENT_ORDER'

AWAITING_UR_OUR = 'AWAITING_UR_OUR'

CANCELED = 'CANCELED'

EXPIRED = 'EXPIRED'

FILLED = 'FILLED'

PENDING_ACTIVATION = 'PENDING_ACTIVATION'

PENDING_CANCEL = 'PENDING_CANCEL'

PENDING_REPLACE = 'PENDING_REPLACE'

QUEUED = 'QUEUED'

REJECTED = 'REJECTED'

REPLACED = 'REPLACED'

WORKING = 'WORKING'

14 Chapter 3. HTTP Client

https://developer.tdameritrade.com/account-access/apis/get/orders-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0

tda-api

3.5.3 Editing Existing Orders

Endpoints for canceling and replacing existing orders. Annoyingly, while these endpoints require an order ID, it seems
that when placing new orders the API does not return any metadata about the new order. As a result, if you want to
cancel or replace an order after you’ve created it, you must search for it using the methods described in Accessing
Existing Orders.

Client.cancel_order(order_id, account_id)
Cancel a specific order for a specific account. Official documentation.

Client.replace_order(account_id, order_id, order_spec)
Replace an existing order for an account. The existing order will be replaced by the new order. Once replaced,
the old order will be canceled and a new order will be created. Official documentation.

3.6 Account Info

These methods provide access to useful information about accounts. An incomplete list of the most interesting bits:

• Account balances, including available trading balance

• Positions

• Order history

See the official documentation for each method for a complete response schema.

Client.get_account(account_id, *, fields=None)
Account balances, positions, and orders for a specific account. Official documentation.

Parameters fields – Balances displayed by default, additional fields can be added here by adding
values from Account.Fields.

Client.get_accounts(*, fields=None)
Account balances, positions, and orders for all linked accounts. Official documentation.

Parameters fields – Balances displayed by default, additional fields can be added here by adding
values from Account.Fields.

class tda.client.Client.Account

class Fields
Account fields passed to get_account() and get_accounts()

ORDERS = 'orders'

POSITIONS = 'positions'

3.7 Instrument Info

Note: symbol fundamentals (P/E ratios, number of shares outstanding, dividend yield, etc.) is available using the
Instrument.Projection.FUNDAMENTAL projection.

Client.search_instruments(symbols, projection)
Search or retrieve instrument data, including fundamental data. Official documentation.

Parameters projection – Query type. See Instrument.Projection for options.

3.6. Account Info 15

https://developer.tdameritrade.com/account-access/apis/delete/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0
https://developer.tdameritrade.com/account-access/apis/put/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts-0
https://developer.tdameritrade.com/instruments/apis/get/instruments

tda-api

Client.get_instrument(cusip)
Get an instrument by CUSIP. Official documentation.

class tda.client.Client.Instrument

class Projection
Search query type for search_instruments(). See the official documentation for details on the
semantics of each.

DESC_REGEX = 'desc-regex'

DESC_SEARCH = 'desc-search'

FUNDAMENTAL = 'fundamental'

SYMBOL_REGEX = 'symbol-regex'

SYMBOL_SEARCH = 'symbol-search'

3.8 Option Chain

Unfortunately, option chains are well beyond the ability of your humble author. You are encouraged to read the official
API documentation to learn more.

If you are knowledgeable enough to write something more substantive here, please follow the instructions in Con-
tributing to tda-api to send in a patch.

Client.get_option_chain(symbol, *, contract_type=None, strike_count=None, in-
clude_quotes=None, strategy=None, interval=None, strike=None,
strike_range=None, from_date=None, to_date=None, volatility=None,
underlying_price=None, interest_rate=None, days_to_expiration=None,
exp_month=None, option_type=None)

Get option chain for an optionable Symbol. Official documentation.

Parameters

• contract_type – Type of contracts to return in the chain. See Options.
ContractType for choices.

• strike_count – The number of strikes to return above and below the at-the-money price.

• include_quotes – Include quotes for options in the option chain?

• strategy – If passed, returns a Strategy Chain. See Options.Strategy for choices.

• interval – Strike interval for spread strategy chains (see strategy param).

• strike – Return options only at this strike price.

• strike_range – Return options for the given range. See Options.StrikeRange
for choices.

• from_date – Only return expirations after this date. For strategies, expiration refers to
the nearest term expiration in the strategy. Accepts datetime.date and datetime.
datetime.

• to_date – Only return expirations before this date. For strategies, expiration refers to
the nearest term expiration in the strategy. Accepts datetime.date and datetime.
datetime.

16 Chapter 3. HTTP Client

https://developer.tdameritrade.com/instruments/apis/get/instruments/%7Bcusip%7D
https://developer.tdameritrade.com/instruments/apis/get/instruments
https://developer.tdameritrade.com/option-chains/apis/get/marketdata/chains

tda-api

• volatility – Volatility to use in calculations. Applies only to ANALYTICAL strategy
chains.

• underlying_price – Underlying price to use in calculations. Applies only to
ANALYTICAL strategy chains.

• interest_rate – Interest rate to use in calculations. Applies only to ANALYTICAL
strategy chains.

• days_to_expiration – Days to expiration to use in calculations. Applies only to
ANALYTICAL strategy chains

• exp_month – Return only options expiring in the specified month. See Options.
ExpirationMonth for choices.

• option_type – Types of options to return. See Options.Type for choices.

class tda.client.Client.Options

class ContractType
An enumeration.

ALL = 'ALL'

CALL = 'CALL'

PUT = 'PUT'

class ExpirationMonth
An enumeration.

APRIL = 'APR'

AUGUST = 'AUG'

DECEMBER = 'DEC'

FEBRUARY = 'FEB'

JANUARY = 'JAN'

JULY = 'JUL'

JUNE = 'JUN'

MARCH = 'MAR'

MAY = 'MAY'

NOVEMBER = 'NOV'

OCTOBER = 'OCT'

SEPTEMBER = 'SEP'

class Strategy
An enumeration.

ANALYTICAL = 'ANALYTICAL'

BUTTERFLY = 'BUTTERFLY'

CALENDAR = 'CALENDAR'

COLLAR = 'COLLAR'

CONDOR = 'CONDOR'

3.8. Option Chain 17

tda-api

COVERED = 'COVERED'

DIAGONAL = 'DIAGONAL'

ROLL = 'ROLL'

SINGLE = 'SINGLE'

STRADDLE = 'STRADDLE'

STRANGLE = 'STRANGLE'

VERTICAL = 'VERTICAL'

class StrikeRange
An enumeration.

ALL = 'ALL'

IN_THE_MONEY = 'IN_THE_MONEY'

NEAR_THE_MONEY = 'NEAR_THE_MONEY'

OUT_OF_THE_MONEY = 'OUT_OF_THE_MONEY'

STRIKES_ABOVE_MARKET = 'STRIKES_ABOVE_MARKET'

STRIKES_BELOW_MARKET = 'STRIKES_BELOW_MARKET'

STRIKES_NEAR_MARKET = 'STRIKES_NEAR_MARKET'

class Type
An enumeration.

ALL = 'ALL'

NON_STANDARD = 'NS'

STANDARD = 'S'

3.9 Price History

Fetching price history is somewhat complicated due to the fact that only certain combinations of parameters are valid.
To avoid accidentally making it impossible to send valid requests, this method performs no validation on its parameters.
If you are receiving empty requests or other weird return values, see the official documentation for more details.

Client.get_price_history(symbol, *, period_type=None, period=None, frequency_type=None,
frequency=None, start_datetime=None, end_datetime=None,
need_extended_hours_data=None)

Get price history for a symbol. Official documentation.

Parameters

• period_type – The type of period to show.

• period – The number of periods to show. Should not be provided if start_datetime
and end_datetime.

• frequency_type – The type of frequency with which a new candle is formed.

• frequency – The number of the frequencyType to be included in each candle.

• start_datetime – Start date.

• end_datetime – End date. Default is previous trading day.

18 Chapter 3. HTTP Client

https://developer.tdameritrade.com/price-history/apis/get/marketdata/%7Bsymbol%7D/pricehistory

tda-api

• need_extended_hours_data – If true, return extended hours data. Otherwise return
regular market hours only.

class tda.client.Client.PriceHistory

class Frequency
An enumeration.

DAILY = 1

EVERY_FIFTEEN_MINUTES = 15

EVERY_FIVE_MINUTES = 5

EVERY_MINUTE = 1

EVERY_TEN_MINUTES = 10

EVERY_THIRTY_MINUTES = 30

MONTHLY = 1

WEEKLY = 1

class FrequencyType
An enumeration.

DAILY = 'daily'

MINUTE = 'minute'

MONTHLY = 'monthly'

WEEKLY = 'weekly'

class Period
An enumeration.

FIFTEEN_YEARS = 15

FIVE_DAYS = 5

FIVE_YEARS = 5

FOUR_DAYS = 4

ONE_DAY = 1

ONE_MONTH = 1

ONE_YEAR = 1

SIX_MONTHS = 6

TEN_DAYS = 10

TEN_YEARS = 10

THREE_DAYS = 3

THREE_MONTHS = 3

THREE_YEARS = 3

TWENTY_YEARS = 20

TWO_DAYS = 2

TWO_MONTHS = 2

3.9. Price History 19

tda-api

TWO_YEARS = 2

YEAR_TO_DATE = 1

class PeriodType
An enumeration.

DAY = 'day'

MONTH = 'month'

YEAR = 'year'

YEAR_TO_DATE = 'ytd'

3.10 Current Quotes

Client.get_quote(symbol)
Get quote for a symbol. Note due to limitations in URL encoding, this method is not recommended for instru-
ments with symbols symbols containing non-alphanumeric characters, for example as futures like /ES. To get
quotes for those symbols, use Client.get_quotes().

Official documentation.

Client.get_quotes(symbols)
Get quote for a symbol. This method supports all symbols, including those containing non-alphanumeric char-
acters like /ES. Official documentation.

3.11 Other Endpoints

Note If your account limited to delayed quotes, these quotes will also be delayed.

3.11.1 Transaction History

Client.get_transaction(account_id, transaction_id)
Transaction for a specific account. Official documentation.

Client.get_transactions(account_id, *, transaction_type=None, symbol=None, start_date=None,
end_date=None)

Transaction for a specific account. Official documentation.

Parameters

• transaction_type – Only transactions with the specified type will be returned.

• symbol – Only transactions with the specified symbol will be returned.

• start_date – Only transactions after this date will be returned. Note the maximum date
range is one year. Accepts datetime.date and datetime.datetime.

• end_date – Only transactions before this date will be returned Note the maximum date
range is one year. Accepts datetime.date and datetime.datetime.

class tda.client.Client.Transactions

class TransactionType
An enumeration.

20 Chapter 3. HTTP Client

https://developer.tdameritrade.com/quotes/apis/get/marketdata/%7Bsymbol%7D/quotes
https://developer.tdameritrade.com/quotes/apis/get/marketdata/quotes
https://developer.tdameritrade.com/transaction-history/apis/get/accounts/%7BaccountId%7D/transactions/%7BtransactionId%7D-0
https://developer.tdameritrade.com/transaction-history/apis/get/accounts/%7BaccountId%7D/transactions-0

tda-api

ADVISORY_FEES = 'ADVISORY_FEES'

ALL = 'ALL'

BUY_ONLY = 'BUY_ONLY'

CASH_IN_OR_CASH_OUT = 'CASH_IN_OR_CASH_OUT'

CHECKING = 'CHECKING'

DIVIDEND = 'DIVIDEND'

INTEREST = 'INTEREST'

OTHER = 'OTHER'

SELL_ONLY = 'SELL_ONLY'

TRADE = 'TRADE'

3.11.2 Saved Orders

Client.create_saved_order(account_id, order_spec)
Save an order for a specific account. Official documentation.

Client.delete_saved_order(account_id, order_id)
Delete a specific saved order for a specific account. Official documentation.

Client.get_saved_order(account_id, order_id)
Specific saved order by its ID, for a specific account. Official documentation.

Client.get_saved_orders_by_path(account_id)
Saved orders for a specific account. Official documentation.

Client.replace_saved_order(account_id, order_id, order_spec)
Replace an existing saved order for an account. The existing saved order will be replaced by the new order.
Official documentation.

3.11.3 Market Hours

Client.get_hours_for_multiple_markets(markets, date)
Retrieve market hours for specified markets. Official documentation.

Parameters

• markets – Market to return hours for. Iterable of Markets.

• date – The date for which market hours information is requested. Accepts datetime.
date and datetime.datetime.

Client.get_hours_for_single_market(market, date)
Retrieve market hours for specified single market. Official documentation.

Parameters

• markets – Market to return hours for. Instance of Markets.

• date – The date for which market hours information is requested. Accepts datetime.
date and datetime.datetime.

class tda.client.Client.Markets
Values for get_hours_for_multiple_markets() and get_hours_for_single_market().

3.11. Other Endpoints 21

https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/savedorders-0
https://developer.tdameritrade.com/account-access/apis/delete/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0
https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/savedorders-0
https://developer.tdameritrade.com/account-access/apis/put/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0
https://developer.tdameritrade.com/market-hours/apis/get/marketdata/hours
https://developer.tdameritrade.com/market-hours/apis/get/marketdata/%7Bmarket%7D/hours

tda-api

BOND = 'BOND'

EQUITY = 'EQUITY'

FOREX = 'FOREX'

FUTURE = 'FUTURE'

OPTION = 'OPTION'

3.11.4 Movers

Client.get_movers(index, direction, change)
Top 10 (up or down) movers by value or percent for a particular market. Official documentation.

Parameters

• direction – See Movers.Direction

• change – See Movers.Change

class tda.client.Client.Movers

class Change
Values for get_movers()

PERCENT = 'percent'

VALUE = 'value'

class Direction
Values for get_movers()

DOWN = 'down'

UP = 'up'

3.11.5 User Info and Preferences

Client.get_preferences(account_id)
Preferences for a specific account. Official documentation.

Client.get_user_principals(fields=None)
User Principal details. Official documentation.

Client.update_preferences(account_id, preferences)
Update preferences for a specific account.

Please note that the directOptionsRouting and directEquityRouting values cannot be modified via this operation.
Official documentation.

class tda.client.Client.UserPrincipals

class Fields
An enumeration.

PREFERENCES = 'preferences'

STREAMER_CONNECTION_INFO = 'streamerConnectionInfo'

STREAMER_SUBSCRIPTION_KEYS = 'streamerSubscriptionKeys'

22 Chapter 3. HTTP Client

https://developer.tdameritrade.com/movers/apis/get/marketdata/%7Bindex%7D/movers
https://developer.tdameritrade.com/user-principal/apis/get/accounts/%7BaccountId%7D/preferences-0
https://developer.tdameritrade.com/user-principal/apis/get/userprincipals-0
https://developer.tdameritrade.com/user-principal/apis/put/accounts/%7BaccountId%7D/preferences-0

tda-api

SURROGATE_IDS = 'surrogateIds'

3.11.6 Watchlists

Note: These methods only support static watchlists, i.e. they cannot access dynamic watchlists.

Client.create_watchlist(account_id, watchlist_spec)
‘Create watchlist for specific account.This method does not verify that the symbol or asset type are valid. Official
documentation.

Client.delete_watchlist(account_id, watchlist_id)
Delete watchlist for a specific account. Official documentation.

Client.get_watchlist(account_id, watchlist_id)
Specific watchlist for a specific account. Official documentation.

Client.get_watchlists_for_multiple_accounts()
All watchlists for all of the user’s linked accounts. Official documentation.

Client.get_watchlists_for_single_account(account_id)
All watchlists of an account. Official documentation.

Client.replace_watchlist(account_id, watchlist_id, watchlist_spec)
Replace watchlist for a specific account. This method does not verify that the symbol or asset type are valid.
Official documentation.

Client.update_watchlist(account_id, watchlist_id, watchlist_spec)
Partially update watchlist for a specific account: change watchlist name, add to the beginning/end of a watchlist,
update or delete items in a watchlist. This method does not verify that the symbol or asset type are valid. Official
documentation.

3.11. Other Endpoints 23

https://developer.tdameritrade.com/watchlist/apis/post/accounts/%7BaccountId%7D/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/post/accounts/%7BaccountId%7D/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/delete/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/get/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/get/accounts/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/get/accounts/%7BaccountId%7D/watchlists-0
https://developer.tdameritrade.com/watchlist/apis/put/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/patch/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0
https://developer.tdameritrade.com/watchlist/apis/patch/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0

tda-api

24 Chapter 3. HTTP Client

CHAPTER 4

Streaming Client

A wapper around the TD Ameritrade Streaming API. This API is a websockets-based streaming API that provides to
up-to-the-second data on market activity. Most impressively, it provides realtime data, including Level Two and time
of sale data for major equities, options, and futures exchanges.

Here’s an example of how you can receive book snapshots of GOOG (note if you run this outside regular trading hours
you may not see anything):

from tda.auth import easy_client
from tda.client import Client
from tda.streaming import StreamClient

import asyncio
import json

client = easy_client(
api_key='APIKEY',
redirect_uri='https://localhost',
token_path='/tmp/token.pickle')

stream_client = StreamClient(client, account_id=1234567890)

async def read_stream():
await stream_client.login()
await stream_client.quality_of_service(StreamClient.QOSLevel.EXPRESS)

Always add handlers before subscribing because many streams start sending
data immediately after success, and messages with no handlers are dropped.
stream_client.add_nasdaq_book_handler(

lambda msg: print(json.dumps(msg, indent=4)))
await stream_client.nasdaq_book_subs(['GOOG'])

while True:
await stream_client.handle_message()

asyncio.run(read_stream())

25

https://developer.tdameritrade.com/content/streaming-data

tda-api

This API uses Python coroutines to simplify implementation and preserve performance. As a result, it requires Python
3.8 or higher to use. tda.stream will not be available on older versions of Python.

4.1 Use Overview

The example above demonstrates the end-to-end workflow for using tda.stream. There’s more in there than meets
the eye, so let’s dive into the details.

4.1.1 Logging In

Before we can perform any stream operations, the client must be logged in to the stream. Unlike the HTTP client, in
which every request is authenticated using a token, this client sends unauthenticated requests and instead authenticates
the entire stream. As a result, this login process is distinct from the token generation step that’s used in the HTTP
client.

Stream login is accomplished simply by calling StreamClient.login(). Once this happens successfully, all
stream operations can be performed. Attemping to perform operations that require login before this function is called
raises an exception.

StreamClient.login()
Official Documentation

Performs initial stream setup:

• Fetches streaming information from the HTTP client’s get_user_principals() method

• Initializes the socket

• Builds and sends and authentication request

• Waits for response indicating login success

All stream operations are available after this method completes.

4.1.2 Setting Quality of Service

By default, the stream’s update frequency is set to 1000ms. The frequency can be increased by calling the
quality_of_service function and passing an appropriate QOSLevel value.

StreamClient.quality_of_service(qos_level)
Official Documentation

Specifies the frequency with which updated data should be sent to the client. If not called, the frequency will
default to every second.

Parameters qos_level – Quality of service level to request. See QOSLevel for options.

class StreamClient.QOSLevel
Quality of service levels

EXPRESS = '0'
500ms between updates. Fastest available

REAL_TIME = '1'
750ms between updates

FAST = '2'
1000ms between updates. Default value.

26 Chapter 4. Streaming Client

https://docs.python.org/3/library/asyncio-task.html
https://developer.tdameritrade.com/content/streaming-data#_Toc504640574
https://developer.tdameritrade.com/content/streaming-data#_Toc504640578

tda-api

MODERATE = '3'
1500ms between updates

SLOW = '4'
3000ms between updates

DELAYED = '5'
5000ms between updates

4.1.3 Subscribing to Streams

These functions have names that follow the pattern SERVICE_NAME_subs. These functions send a request to enable
streaming data for a particular data stream. They are not thread safe, so they should only be called in series.

When subscriptions are called multiple times on the same stream, the results vary. What’s more, these results aren’t
documented in the official documentation. As a result, it’s recommended not to call a subscription function more than
once for any given stream.

Some services, notably Equity Charts and Futures Charts, offer SERVICE_NAME_add functions which can be used
to add symbols to the stream after the subscription has been created. For others, calling the subscription methods
again seems to clear the old subscription and create a new one. Note this behavior is not officially documented, so this
interpretation may be incorrect.

4.1.4 Registering Handlers

By themselves, the subscription functions outlined above do nothing except cause messages to be sent to the client.
The add_SERVICE_NAME_handler functions register functions that will receive these messages when they arrive.
When messages arrive, these handlers will be called serially. There is no limit to the number of handlers that can be
registered to a service.

4.1.5 Handling Messages

Once the stream client is properly logged in, subscribed to streams, and has handlers registered, we can start handling
messages. This is done simply by awaiting on the handle_message() function. This function reads a single
message and dispatches it to the appropriate handler or handlers.

If a message is received for which no handler is registered, that message is ignored.

Handlers should take a single argument representing the stream message received:

import json

def sample_handler(msg):
print(json.dumps(msg, indent=4))

4.1.6 Data Field Relabeling

Under the hood, this API returns JSON objects with numerical key representing labels:

{
"service": "CHART_EQUITY",
"timestamp": 1590597641293,
"command": "SUBS",

(continues on next page)

4.1. Use Overview 27

tda-api

(continued from previous page)

"content": [
{

"seq": 985,
"key": "MSFT",
"1": 179.445,
"2": 179.57,
"3": 179.4299,
"4": 179.52,
"5": 53742.0,
"6": 339,
"7": 1590597540000,
"8": 18409

},
]

}

These labels are tricky to decode, and require a knowledge of the documentation to decode properly. tda-api makes
your life easier by doing this decoding for you, replacing numerical labels with strings pulled from the documentation.
For instance, the message above would be relabeled as:

{
"service": "CHART_EQUITY",
"timestamp": 1590597641293,
"command": "SUBS",
"content": [

{
"seq": 985,
"key": "MSFT",
"OPEN_PRICE": 179.445,
"HIGH_PRICE": 179.57,
"LOW_PRICE": 179.4299,
"CLOSE_PRICE": 179.52,
"VOLUME": 53742.0,
"SEQUENCE": 339,
"CHART_TIME": 1590597540000,
"CHART_DAY": 18409

},
]

}

This documentation describes the various fields and their numerical values. You can find them by investigating the
various enum classes ending in ***Fields.

Some streams, such as the ones described in Level One Quotes, allow you to specify a subset of fields to be returned.
Subscription handlers for these services take a list of the appropriate field enums the extra fields parameter. If
nothing is passed to this parameter, all supported fields are requested.

4.1.7 Interpreting Sequence Numbers

Many endpoints include a seq parameter in their data contents. The official documentation is unclear on the interpre-
tation of this value: the time of sale documentation states that messages containing already-observed values of seq can
be ignored, but other streams contain this field both in their metadata and in their content, and yet their documentation
doesn’t mention ignoring any seq values.

This presents a design choice: should tda-api ignore duplicate seq values on users’ behalf? Given the ambiguity
of the documentation, it was decided to not ignore them and instead pass them to all handlers. Clients are encouraged

28 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640628

tda-api

to use their judgment in handling these values.

4.1.8 Unimplemented Streams

This document lists the streams supported by tda-api. Eagle-eyed readers may notice that some streams are de-
scribed in the documentation but were not implemented. This is due to complexity or anticipated lack of interest. If
you feel you’d like a stream added, please file an issue here or see the contributing guidelines to learn how to add the
functionality yourself.

4.2 Enabling Real-Time Data Access

By default, TD Ameritrade delivers delayed quotes. However, as of this writing, real time streaming is available for all
streams, including quotes and level two depth of book data. It is also available for free, which in the author’s opinion
is an impressive feature for a retail brokerage. For most users it’s enough to sign the relevant exchange agreements
and then subscribe to the relevant streams, although your mileage may vary.

Please remember that your use of this API is subject to agreeing to TDAmeritrade’s terms of service. Please don’t
reach out to us asking for help enabling real-time data. Answers to most questions are a Google search away.

4.3 OHLCV Charts

These streams summarize trading activity on a minute-by-minute basis for equities and futures, providing OHLCV
(Open/High/Low/Close/Volume) data.

4.3.1 Equity Charts

Minute-by-minute OHLCV data for equities.

StreamClient.chart_equity_subs(symbols)
Official documentation

Subscribe to equity charts. Behavior is undefined if called multiple times.

Parameters symbols – Equity symbols to subscribe to.

StreamClient.chart_equity_add(symbols)
Official documentation

Add a symbol to the equity charts subscription. Behavior is undefined if called before
chart_equity_subs().

Parameters symbols – Equity symbols to add to the subscription.

StreamClient.add_chart_equity_handler(handler)
Adds a handler to the equity chart subscription. See Handling Messages for details.

class StreamClient.ChartEquityFields
Official documentation

Data fields for equity OHLCV data. Primarily an implementation detail and not used in client code. Provided
here as documentation for key values stored returned in the stream messages.

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

4.2. Enabling Real-Time Data Access 29

https://github.com/alexgolec/tda-api/issues
https://github.com/alexgolec/tda-api/blob/master/CONTRIBUTING.rst
https://invest.ameritrade.com/grid/p/site#r=jPage/cgi-bin/apps/u/AccountSettings
https://invest.ameritrade.com/grid/p/site#r=jPage/cgi-bin/apps/u/Subscriptions
https://developer.tdameritrade.com/content/streaming-data#_Toc504640587
https://developer.tdameritrade.com/content/streaming-data#_Toc504640588
https://developer.tdameritrade.com/content/streaming-data#_Toc504640589

tda-api

OPEN_PRICE = 1
Opening price for the minute

HIGH_PRICE = 2
Highest price for the minute

LOW_PRICE = 3
Chart’s lowest price for the minute

CLOSE_PRICE = 4
Closing price for the minute

VOLUME = 5
Total volume for the minute

SEQUENCE = 6
Identifies the candle minute. Explicitly labeled “not useful” in the official documentation.

CHART_TIME = 7
Milliseconds since Epoch

CHART_DAY = 8
Documented as not useful, included for completeness

4.3.2 Futures Charts

Minute-by-minute OHLCV data for futures.

StreamClient.chart_futures_subs(symbols)
Official documentation

Subscribe to futures charts. Behavior is undefined if called multiple times.

Parameters symbols – Futures symbols to subscribe to.

StreamClient.chart_futures_add(symbols)
Official documentation

Add a symbol to the futures chart subscription. Behavior is undefined if called before
chart_futures_subs().

Parameters symbols – Futures symbols to add to the subscription.

StreamClient.add_chart_futures_handler(handler)
Adds a handler to the futures chart subscription. See Handling Messages for details.

class StreamClient.ChartFuturesFields
Official documentation

Data fields for equity OHLCV data. Primarily an implementation detail and not used in client code. Provided
here as documentation for key values stored returned in the stream messages.

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

CHART_TIME = 1
Milliseconds since Epoch

OPEN_PRICE = 2
Opening price for the minute

HIGH_PRICE = 3
Highest price for the minute

30 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640587
https://developer.tdameritrade.com/content/streaming-data#_Toc504640590
https://developer.tdameritrade.com/content/streaming-data#_Toc504640592

tda-api

LOW_PRICE = 4
Chart’s lowest price for the minute

CLOSE_PRICE = 5
Closing price for the minute

VOLUME = 6
Total volume for the minute

4.4 Level One Quotes

Level one quotes provide an up-to-date view of bid/ask/volume data. In particular they list the best available bid and
ask prices, together with the requested volume of each. They are updated live as market conditions change.

4.4.1 Equities Quotes

Level one quotes for equities traded on NYSE, AMEX, and PACIFIC.

StreamClient.level_one_equity_subs(symbols, *, fields=None)
Official documentation

Subscribe to level one equity quote data.

Parameters

• symbols – Equity symbols to receive quotes for

• fields – Iterable of LevelOneEquityFields representing the fields to return in
streaming entries. If unset, all fields will be requested.

StreamClient.add_level_one_equity_handler(handler)
Register a function to handle level one equity quotes as they are sent. See Handling Messages for details.

class StreamClient.LevelOneEquityFields
Official documentation

Fields for equity quotes.

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

BID_PRICE = 1
Current Best Bid Price

ASK_PRICE = 2
Current Best Ask Price

LAST_PRICE = 3
Price at which the last trade was matched

BID_SIZE = 4
Number of shares for bid

ASK_SIZE = 5
Number of shares for ask

ASK_ID = 6
Exchange with the best ask

4.4. Level One Quotes 31

https://developer.tdameritrade.com/content/streaming-data#_Toc504640599
https://developer.tdameritrade.com/content/streaming-data#_Toc504640599

tda-api

BID_ID = 7
Exchange with the best bid

TOTAL_VOLUME = 8
Aggregated shares traded throughout the day, including pre/post market hours. Note volume is set to zero
at 7:28am ET.

LAST_SIZE = 9
Number of shares traded with last trade, in 100’s

TRADE_TIME = 10
Trade time of the last trade, in seconds since midnight EST

QUOTE_TIME = 11
Trade time of the last quote, in seconds since midnight EST

HIGH_PRICE = 12
Day’s high trade price. Notes:

• According to industry standard, only regular session trades set the High and Low.

• If a stock does not trade in the AM session, high and low will be zero.

• High/low reset to 0 at 7:28am ET

LOW_PRICE = 13
Day’s low trade price. Same notes as HIGH_PRICE.

BID_TICK = 14
Indicates Up or Downtick (NASDAQ NMS & Small Cap). Updates whenever bid updates.

CLOSE_PRICE = 15
Previous day’s closing price. Notes:

• Closing prices are updated from the DB when Pre-Market tasks are run by TD Ameritrade at 7:29AM
ET.

• As long as the symbol is valid, this data is always present.

• This field is updated every time the closing prices are loaded from DB

EXCHANGE_ID = 16
Primary “listing” Exchange.

MARGINABLE = 17
Stock approved by the Federal Reserve and an investor’s broker as being suitable for providing collateral
for margin debt?

SHORTABLE = 18
Stock can be sold short?

ISLAND_BID_DEPRECATED = 19
Deprecated, documented for completeness.

ISLAND_ASK_DEPRECATED = 20
Deprecated, documented for completeness.

ISLAND_VOLUME_DEPRECATED = 21
Deprecated, documented for completeness.

QUOTE_DAY = 22
Day of the quote

TRADE_DAY = 23
Day of the trade

32 Chapter 4. Streaming Client

tda-api

VOLATILITY = 24
Option Risk/Volatility Measurement. Notes:

• Volatility is reset to 0 when Pre-Market tasks are run at 7:28 AM ET

• Once per day descriptions are loaded from the database when Pre-Market tasks are run at 7:29:50 AM
ET.

DESCRIPTION = 25
A company, index or fund name

LAST_ID = 26
Exchange where last trade was executed

DIGITS = 27
Valid decimal points. 4 digits for AMEX, NASDAQ, OTCBB, and PINKS, 2 for others.

OPEN_PRICE = 28
Day’s Open Price. Notes:

• Open is set to ZERO when Pre-Market tasks are run at 7:28.

• If a stock doesn’t trade the whole day, then the open price is 0.

• In the AM session, Open is blank because the AM session trades do not set the open.

NET_CHANGE = 29
Current Last-Prev Close

HIGH_52_WEEK = 30
Highest price traded in the past 12 months, or 52 weeks

LOW_52_WEEK = 31
Lowest price traded in the past 12 months, or 52 weeks

PE_RATIO = 32
Price to earnings ratio

DIVIDEND_AMOUNT = 33
Dividen earnings Per Share

DIVIDEND_YIELD = 34
Dividend Yield

ISLAND_BID_SIZE_DEPRECATED = 35
Deprecated, documented for completeness.

ISLAND_ASK_SIZE_DEPRECATED = 36
Deprecated, documented for completeness.

NAV = 37
Mutual Fund Net Asset Value

FUND_PRICE = 38
Mutual fund price

EXCHANGE_NAME = 39
Display name of exchange

DIVIDEND_DATE = 40
Dividend date

IS_REGULAR_MARKET_QUOTE = 41
Is last quote a regular quote

4.4. Level One Quotes 33

tda-api

IS_REGULAR_MARKET_TRADE = 42
Is last trade a regular trade

REGULAR_MARKET_LAST_PRICE = 43
Last price, only used when IS_REGULAR_MARKET_TRADE is True

REGULAR_MARKET_LAST_SIZE = 44
Last trade size, only used when IS_REGULAR_MARKET_TRADE is True

REGULAR_MARKET_TRADE_TIME = 45
Last trade time, only used when IS_REGULAR_MARKET_TRADE is True

REGULAR_MARKET_TRADE_DAY = 46
Last trade date, only used when IS_REGULAR_MARKET_TRADE is True

REGULAR_MARKET_NET_CHANGE = 47
REGULAR_MARKET_LAST_PRICE minus CLOSE_PRICE

SECURITY_STATUS = 48
Indicates a symbols current trading status, Normal, Halted, Closed

MARK = 49
Mark Price

QUOTE_TIME_IN_LONG = 50
Last quote time in milliseconds since Epoch

TRADE_TIME_IN_LONG = 51
Last trade time in milliseconds since Epoch

REGULAR_MARKET_TRADE_TIME_IN_LONG = 52
Regular market trade time in milliseconds since Epoch

4.4.2 Options Quotes

Level one quotes for options. Note you can use Client.get_option_chain() to fetch available option sym-
bols.

StreamClient.level_one_option_subs(symbols, *, fields=None)
Official documentation

Subscribe to level one option quote data.

Parameters

• symbols – Option symbols to receive quotes for

• fields – Iterable of LevelOneOptionFields representing the fields to return in
streaming entries. If unset, all fields will be requested.

StreamClient.add_level_one_option_handler(handler)
Register a function to handle level one options quotes as they are sent. See Handling Messages for details.

class StreamClient.LevelOneOptionFields
Official documentation

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

DESCRIPTION = 1
A company, index or fund name

34 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640602
https://developer.tdameritrade.com/content/streaming-data#_Toc504640601

tda-api

BID_PRICE = 2
Current Best Bid Price

ASK_PRICE = 3
Current Best Ask Price

LAST_PRICE = 4
Price at which the last trade was matched

HIGH_PRICE = 5
Day’s high trade price. Notes:

• According to industry standard, only regular session trades set the High and Low.

• If an option does not trade in the AM session, high and low will be zero.

• High/low reset to 0 at 7:28am ET.

LOW_PRICE = 6
Day’s low trade price. Same notes as HIGH_PRICE.

CLOSE_PRICE = 7
Previous day’s closing price. Closing prices are updated from the DB when Pre-Market tasks are run at
7:29AM ET.

TOTAL_VOLUME = 8
Aggregated shares traded throughout the day, including pre/post market hours. Reset to zero at 7:28am
ET.

OPEN_INTEREST = 9
Open interest

VOLATILITY = 10
Option Risk/Volatility Measurement. Volatility is reset to 0 when Pre-Market tasks are run at 7:28 AM ET.

QUOTE_TIME = 11
Trade time of the last quote in seconds since midnight EST

TRADE_TIME = 12
Trade time of the last quote in seconds since midnight EST

MONEY_INTRINSIC_VALUE = 13
Money intrinsic value

QUOTE_DAY = 14
Day of the quote

TRADE_DAY = 15
Day of the trade

EXPIRATION_YEAR = 16
Option expiration year

MULTIPLIER = 17
Option multiplier

DIGITS = 18
Valid decimal points. 4 digits for AMEX, NASDAQ, OTCBB, and PINKS, 2 for others.

OPEN_PRICE = 19
Day’s Open Price. Notes:

• Open is set to ZERO when Pre-Market tasks are run at 7:28.

• If a stock doesn’t trade the whole day, then the open price is 0.

4.4. Level One Quotes 35

tda-api

• In the AM session, Open is blank because the AM session trades do not set the open.

BID_SIZE = 20
Number of shares for bid

ASK_SIZE = 21
Number of shares for ask

LAST_SIZE = 22
Number of shares traded with last trade, in 100’s

NET_CHANGE = 23
Current Last-Prev Close

STRIKE_PRICE = 24

CONTRACT_TYPE = 25

UNDERLYING = 26

EXPIRATION_MONTH = 27

DELIVERABLES = 28

TIME_VALUE = 29

EXPIRATION_DAY = 30

DAYS_TO_EXPIRATION = 31

DELTA = 32

GAMMA = 33

THETA = 34

VEGA = 35

RHO = 36

SECURITY_STATUS = 37
Indicates a symbols current trading status, Normal, Halted, Closed

THEORETICAL_OPTION_VALUE = 38

UNDERLYING_PRICE = 39

UV_EXPIRATION_TYPE = 40

MARK = 41
Mark Price

4.4.3 Futures Quotes

Level one quotes for futures.

StreamClient.level_one_futures_subs(symbols, *, fields=None)
Official documentation

Subscribe to level one futures quote data.

Parameters

• symbols – Futures symbols to receive quotes for

• fields – Iterable of LevelOneFuturesFields representing the fields to return in
streaming entries. If unset, all fields will be requested.

36 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640604

tda-api

StreamClient.add_level_one_futures_handler(handler)
Register a function to handle level one futures quotes as they are sent. See Handling Messages for details.

class StreamClient.LevelOneFuturesFields
Official documentation

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

BID_PRICE = 1
Current Best Bid Price

ASK_PRICE = 2
Current Best Ask Price

LAST_PRICE = 3
Price at which the last trade was matched

BID_SIZE = 4
Number of shares for bid

ASK_SIZE = 5
Number of shares for ask

ASK_ID = 6
Exchange with the best ask

BID_ID = 7
Exchange with the best bid

TOTAL_VOLUME = 8
Aggregated shares traded throughout the day, including pre/post market hours

LAST_SIZE = 9
Number of shares traded with last trade

QUOTE_TIME = 10
Trade time of the last quote in milliseconds since epoch

TRADE_TIME = 11
Trade time of the last trade in milliseconds since epoch

HIGH_PRICE = 12
Day’s high trade price

LOW_PRICE = 13
Day’s low trade price

CLOSE_PRICE = 14
Previous day’s closing price

EXCHANGE_ID = 15
Primary “listing” Exchange. Notes: * I → ICE * E → CME * L → LIFFEUS

DESCRIPTION = 16
Description of the product

LAST_ID = 17
Exchange where last trade was executed

OPEN_PRICE = 18
Day’s Open Price

4.4. Level One Quotes 37

https://developer.tdameritrade.com/content/streaming-data#_Toc504640603

tda-api

NET_CHANGE = 19
Current Last-Prev Close

FUTURE_PERCENT_CHANGE = 20
Current percent change

EXCHANGE_NAME = 21
Name of exchange

SECURITY_STATUS = 22
Trading status of the symbol. Indicates a symbol’s current trading status, Normal, Halted, Closed.

OPEN_INTEREST = 23
The total number of futures ontracts that are not closed or delivered on a particular day

MARK = 24
Mark-to-Market value is calculated daily using current prices to determine profit/loss

TICK = 25
Minimum price movement

TICK_AMOUNT = 26
Minimum amount that the price of the market can change

PRODUCT = 27
Futures product

FUTURE_PRICE_FORMAT = 28
Display in fraction or decimal format.

FUTURE_TRADING_HOURS = 29
Trading hours. Notes:

• days: 0 = monday-friday, 1 = sunday.

• 7 = Saturday

• 0 = [-2000,1700] ==> open, close

• 1 = [-1530,-1630,-1700,1515] ==> open, close, open, close

• 0 = [-1800,1700,d,-1700,1900] ==> open, close, DST-flag, open, close

• If the DST-flag is present, the following hours are for DST days: http://www.cmegroup.com/trading_
hours/

FUTURE_IS_TRADEABLE = 30
Flag to indicate if this future contract is tradable

FUTURE_MULTIPLIER = 31
Point value

FUTURE_IS_ACTIVE = 32
Indicates if this contract is active

FUTURE_SETTLEMENT_PRICE = 33
Closing price

FUTURE_ACTIVE_SYMBOL = 34
Symbol of the active contract

FUTURE_EXPIRATION_DATE = 35
Expiration date of this contract in milliseconds since epoch

38 Chapter 4. Streaming Client

http://www.cmegroup.com/trading_hours/
http://www.cmegroup.com/trading_hours/

tda-api

4.4.4 Forex Quotes

Level one quotes for foreign exchange pairs.

StreamClient.level_one_forex_subs(symbols, *, fields=None)
Official documentation

Subscribe to level one forex quote data.

Parameters

• symbols – Forex symbols to receive quotes for

• fields – Iterable of LevelOneForexFields representing the fields to return in
streaming entries. If unset, all fields will be requested.

StreamClient.add_level_one_forex_handler(handler)
Register a function to handle level one forex quotes as they are sent. See Handling Messages for details.

class StreamClient.LevelOneForexFields
Official documentation

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

BID_PRICE = 1
Current Best Bid Price

ASK_PRICE = 2
Current Best Ask Price

LAST_PRICE = 3
Price at which the last trade was matched

BID_SIZE = 4
Number of shares for bid

ASK_SIZE = 5
Number of shares for ask

TOTAL_VOLUME = 6
Aggregated shares traded throughout the day, including pre/post market hours

LAST_SIZE = 7
Number of shares traded with last trade

QUOTE_TIME = 8
Trade time of the last quote in milliseconds since epoch

TRADE_TIME = 9
Trade time of the last trade in milliseconds since epoch

HIGH_PRICE = 10
Day’s high trade price

LOW_PRICE = 11
Day’s low trade price

CLOSE_PRICE = 12
Previous day’s closing price

EXCHANGE_ID = 13
Primary “listing” Exchange

4.4. Level One Quotes 39

https://developer.tdameritrade.com/content/streaming-data#_Toc504640606
https://developer.tdameritrade.com/content/streaming-data#_Toc504640606

tda-api

DESCRIPTION = 14
Description of the product

OPEN_PRICE = 15
Day’s Open Price

NET_CHANGE = 16
Current Last-Prev Close

EXCHANGE_NAME = 18
Name of exchange

DIGITS = 19
Valid decimal points

SECURITY_STATUS = 20
Trading status of the symbol. Indicates a symbols current trading status, Normal, Halted, Closed.

TICK = 21
Minimum price movement

TICK_AMOUNT = 22
Minimum amount that the price of the market can change

PRODUCT = 23
Product name

TRADING_HOURS = 24
Trading hours

IS_TRADABLE = 25
Flag to indicate if this forex is tradable

MARKET_MAKER = 26

HIGH_52_WEEK = 27
Higest price traded in the past 12 months, or 52 weeks

LOW_52_WEEK = 28
Lowest price traded in the past 12 months, or 52 weeks

MARK = 29
Mark-to-Market value is calculated daily using current prices to determine profit/loss

4.4.5 Futures Options Quotes

Level one quotes for futures options.

StreamClient.level_one_futures_options_subs(symbols, *, fields=None)
Official documentation

Subscribe to level one futures options quote data.

Parameters

• symbols – Futures options symbols to receive quotes for

• fields – Iterable of LevelOneFuturesOptionsFields representing the fields to
return in streaming entries. If unset, all fields will be requested.

StreamClient.add_level_one_futures_options_handler(handler)
Register a function to handle level one futures options quotes as they are sent. See Handling Messages for
details.

40 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640610

tda-api

class StreamClient.LevelOneFuturesOptionsFields
Official documentation

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

BID_PRICE = 1
Current Best Bid Price

ASK_PRICE = 2
Current Best Ask Price

LAST_PRICE = 3
Price at which the last trade was matched

BID_SIZE = 4
Number of shares for bid

ASK_SIZE = 5
Number of shares for ask

ASK_ID = 6
Exchange with the best ask

BID_ID = 7
Exchange with the best bid

TOTAL_VOLUME = 8
Aggregated shares traded throughout the day, including pre/post market hours

LAST_SIZE = 9
Number of shares traded with last trade

QUOTE_TIME = 10
Trade time of the last quote in milliseconds since epoch

TRADE_TIME = 11
Trade time of the last trade in milliseconds since epoch

HIGH_PRICE = 12
Day’s high trade price

LOW_PRICE = 13
Day’s low trade price

CLOSE_PRICE = 14
Previous day’s closing price

EXCHANGE_ID = 15
Primary “listing” Exchange. Notes: * I → ICE * E → CME * L → LIFFEUS

DESCRIPTION = 16
Description of the product

LAST_ID = 17
Exchange where last trade was executed

OPEN_PRICE = 18
Day’s Open Price

NET_CHANGE = 19
Current Last-Prev Close

4.4. Level One Quotes 41

https://developer.tdameritrade.com/content/streaming-data#_Toc504640609

tda-api

FUTURE_PERCENT_CHANGE = 20
Current percent change

EXCHANGE_NAME = 21
Name of exchange

SECURITY_STATUS = 22
Trading status of the symbol. Indicates a symbols current trading status, Normal, Halted, Closed.

OPEN_INTEREST = 23
The total number of futures ontracts that are not closed or delivered on a particular day

MARK = 24
Mark-to-Market value is calculated daily using current prices to determine profit/loss

TICK = 25
Minimum price movement

TICK_AMOUNT = 26
Minimum amount that the price of the market can change

PRODUCT = 27
Futures product

FUTURE_PRICE_FORMAT = 28
Display in fraction or decimal format

FUTURE_TRADING_HOURS = 29
Trading hours

FUTURE_IS_TRADEABLE = 30
Flag to indicate if this future contract is tradable

FUTURE_MULTIPLIER = 31
Point value

FUTURE_IS_ACTIVE = 32
Indicates if this contract is active

FUTURE_SETTLEMENT_PRICE = 33
Closing price

FUTURE_ACTIVE_SYMBOL = 34
Symbol of the active contract

FUTURE_EXPIRATION_DATE = 35
Expiration date of this contract, in milliseconds since epoch

4.5 Level Two Order Book

Level two streams provide a view on continuous order books of various securities. The level two order book describes
the current bids and asks on the market, and these streams provide snapshots of that state.

Due to the lack of official documentation, these streams are largely reverse engineered. While the labeled data repre-
sents a best effort attempt to interpret stream fields, it’s possible that something is wrong or incorrectly labeled.

The documentation lists more book types than are implemented here. In particular, it also lists FOREX_BOOK,
FUTURES_BOOK, and FUTURES_OPTIONS_BOOK as accessible streams. All experimentation has resulted in these
streams refusing to connect, typically returning errors about unavailable services. Due to this behavior and the lack
of official documentation for book streams generally, tda-api assumes these streams are not actually implemented,
and so excludes them. If you have any insight into using them, please let us know.

42 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640612
https://github.com/alexgolec/tda-api/issues

tda-api

4.5.1 Equities Order Books: NYSE and NASDAQ

tda-api supports level two data for NYSE and NASDAQ, which are the two major exchanges dealing in equities,
ETFs, etc. Stocks are typically listed on one or the other, and it is useful to learn about the differences between them:

• “The NYSE and NASDAQ: How They Work” on Investopedia

• “Here’s the difference between the NASDAQ and NYSE” on Business Insider

• “Can Stocks Be Traded on More Than One Exchange?” on Investopedia

You can identify on which exchange a symbol is listed by using Client.search_instruments():

r = c.search_instruments(['GOOG'], projection=c.Instrument.Projection.FUNDAMENTAL)
assert r.status_code == httpx.codes.OK, r.raise_for_status()
print(r.json()['GOOG']['exchange']) # Outputs NASDAQ

However, many symbols have order books available on these streams even though this API call returns neither NYSE
nor NASDAQ. The only sure-fire way to find out whether the order book is available is to attempt to subscribe and see
what happens.

Note to preserve equivalence with what little documentation there is, the NYSE book is called “listed.” Testing indi-
cates this stream corresponds to the NYSE book, but if you find any behavior that suggests otherwise please let us
know.

StreamClient.listed_book_subs(symbols)
Subscribe to the NYSE level two order book. Note this stream has no official documentation.

StreamClient.add_listed_book_handler(handler)
Register a function to handle level two NYSE book data as it is updated See Handling Messages for details.

StreamClient.nasdaq_book_subs(symbols)
Subscribe to the NASDAQ level two order book. Note this stream has no official documentation.

StreamClient.add_nasdaq_book_handler(handler)
Register a function to handle level two NASDAQ book data as it is updated See Handling Messages for details.

4.5.2 Options Order Book

This stream provides the order book for options. It’s not entirely clear what exchange it aggregates from, but it’s
been tested to work and deliver data. The leading hypothesis is that it is bethe order book for the Chicago Board of
Exchange options exchanges, although this is an admittedly an uneducated guess.

StreamClient.options_book_subs(symbols)
Subscribe to the level two order book for options. Note this stream has no official documentation, and it’s not
entirely clear what exchange it corresponds to. Use at your own risk.

StreamClient.add_options_book_handler(handler)
Register a function to handle level two options book data as it is updated See Handling Messages for details.

4.6 Time of Sale

The data in Level Two Order Book describes the bids and asks for various instruments, but by itself is insufficient to
determine when trades actually take place. The time of sale streams notify on trades as they happen. Together with
the level two data, they provide a fairly complete picture of what is happening on an exchange.

All time of sale streams uss a common set of fields:

4.6. Time of Sale 43

https://www.investopedia.com/articles/basics/03/103103.asp
https://www.businessinsider.com/heres-the-difference-between-the-nasdaq-and-nyse-2017-7
https://www.investopedia.com/ask/answers/05/stockmultipleexchanges.asp
https://github.com/alexgolec/tda-api/issues
https://github.com/alexgolec/tda-api/issues
https://www.cboe.com/us/options
https://www.cboe.com/us/options

tda-api

class StreamClient.TimesaleFields
Official documentation

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

TRADE_TIME = 1
Trade time of the last trade in milliseconds since epoch

LAST_PRICE = 2
Price at which the last trade was matched

LAST_SIZE = 3
Number of shares traded with last trade

LAST_SEQUENCE = 4
Number of shares for bid

4.6.1 Equity Trades

StreamClient.timesale_equity_subs(symbols, *, fields=None)
Official documentation

Subscribe to time of sale notifications for equities.

Parameters symbols – Equity symbols to subscribe to

StreamClient.add_timesale_equity_handler(handler)
Register a function to handle equity trade notifications as they happen See Handling Messages for details.

4.6.2 Futures Trades

StreamClient.timesale_futures_subs(symbols, *, fields=None)
Official documentation

Subscribe to time of sale notifications for futures.

Parameters symbols – Futures symbols to subscribe to

StreamClient.add_timesale_futures_handler(handler)
Register a function to handle futures trade notifications as they happen See Handling Messages for details.

4.6.3 Options Trades

StreamClient.timesale_options_subs(symbols, *, fields=None)
Official documentation

Subscribe to time of sale notifications for options.

Parameters symbols – Options symbols to subscribe to

StreamClient.add_timesale_options_handler(handler)
Register a function to handle options trade notifications as they happen See Handling Messages for details.

44 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640626
https://developer.tdameritrade.com/content/streaming-data#_Toc504640628
https://developer.tdameritrade.com/content/streaming-data#_Toc504640628
https://developer.tdameritrade.com/content/streaming-data#_Toc504640628

tda-api

4.7 News Headlines

TD Ameritrade supposedly supports streaming news headlines. However, we have yet to receive any reports of suc-
cessful access to this stream. Attempts to read this stream result in messages like the following, followed by TDA-
initiated stream closure:

{
"notify": [

{
"service": "NEWS_HEADLINE",
"timestamp": 1591500923797,
"content": {

"code": 17,
"msg": "Not authorized for all quotes."

}
}

]
}

The current hypothesis is that this stream requires some permissions or paid access that so far no one has had.If you
manage to get this stream working, or even if you manage to get it to fail with a different message than the one above,
please report it. In the meantime, tda-api provides the following methods for attempting to access this stream.

StreamClient.news_headline_subs(symbols)
Official documentation

Subscribe to news headlines related to the given symbols.

StreamClient.add_news_headline_handler(handler)
Register a function to handle news headlines as they are provided. See Handling Messages for details.

class StreamClient.NewsHeadlineFields
Official documentation

SYMBOL = 0
Ticker symbol in upper case. Represented in the stream as the key field.

ERROR_CODE = 1
Specifies if there is any error

STORY_DATETIME = 2
Headline’s datetime in milliseconds since epoch

HEADLINE_ID = 3
Unique ID for the headline

STATUS = 4

HEADLINE = 5
News headline

STORY_ID = 6

COUNT_FOR_KEYWORD = 7

KEYWORD_ARRAY = 8

IS_HOT = 9

STORY_SOURCE = 10

4.7. News Headlines 45

https://github.com/alexgolec/tda-api/issues
https://developer.tdameritrade.com/content/streaming-data#_Toc504640626
https://developer.tdameritrade.com/content/streaming-data#_Toc504640626

tda-api

4.8 Account Activity

This stream allows you to monitor your account activity, including order execution/cancellation/expiration/etc.
tda-api provide utilities for setting up and reading the stream, but leaves the task of parsing the response XML
object to the user.

StreamClient.account_activity_sub()
Official documentation

Subscribe to account activity for the account id associated with this streaming client. See
AccountActivityFields for more info.

StreamClient.add_account_activity_handler(handler)
Adds a handler to the account activity subscription. See Handling Messages for details.

class StreamClient.AccountActivityFields
Official documentation

Data fields for equity account activity. Primarily an implementation detail and not used in client code. Provided
here as documentation for key values stored returned in the stream messages.

SUBSCRIPTION_KEY = 0
Subscription key. Represented in the stream as the key field.

ACCOUNT = 1
Account # subscribed

MESSAGE_TYPE = 2
Refer to the message type table in the official documentation

MESSAGE_DATA = 3
The core data for the message. Either XML Message data describing the update, NULL in some cases, or
plain text in case of ERROR.

4.9 Troubleshooting

There are a number of issues you might encounter when using the streaming client. This section attempts to provide a
non-authoritative listing of the issues you may encounter when using this client.

Unfortunately, use of the streaming client by non-TDAmeritrade apps is poorly documented and apparently completely
unsupported. This section attempts to provide a non-authoritative listing of the issues you may encounter, but please
note that these are best effort explanations resulting from reverse engineering and crowdsourced experience. Take
them with a grain of salt.

If you have specific questions, please join our Discord server to discuss with the community.

4.9.1 ConnectionClosedOK: code = 1000 (OK), no reason Immediately on
Stream Start

There are a few known causes for this issue:

Streaming Account ID Doesn’t Match Token Account

TDA allows you to link multiple accounts together, so that logging in to one main account allows you to have access
to data from all other linked accounts. This is not a problem for the HTTP client, but the streaming client is a little

46 Chapter 4. Streaming Client

https://developer.tdameritrade.com/content/streaming-data#_Toc504640581
https://developer.tdameritrade.com/content/streaming-data#_Toc504640581
https://developer.tdameritrade.com/content/streaming-data#_Toc504640580
https://developer.tdameritrade.com/content/streaming-data#_Toc504640580
https://developer.tdameritrade.com/content/streaming-data#_Toc504640581
https://discord.gg/nfrd9gh

tda-api

more restrictive. In particular, it appears that opening a StreamClient with an account ID that is different from the
account ID corresponding to the username that was used to create the token is disallowed.

If you’re encountering this issue, make sure you are using the account ID of the account which was used during token
login. If you’re unsure which account was used to create the token, delete your token and create a new one, taking
note of the account ID.

Multiple Concurrent Streams

TDA allows only one open stream per account ID. If you open a second one, it will immediately close itself with this
error. This is not a limitation of tda-api, this is a TDAmeritrade limitation. If you want to use multiple streams,
you need to have multiple accounts, create a separate token under each, and pass each one’s account ID into its own
client.

4.9.2 ConnectionClosedError: code = 1006 (connection closed
abnormally [internal])

TDA has the right to kill the connection at any time for any reason, and this error appears to be a catchall for these
sorts of failures. If you are encountering this error, it is almost certainly not the fault of the tda-api library, but
rather either an internal failure on TDA’s side or a failure in the logic of your own code.

That being said, there have been a number of situations where this error was encountered, and this section attempts to
record the resolution of these failures.

Your Handler is Too Slow

tda-api cannot perform websocket message acknowledgement when your handler code is running. As a result, if
your handler code takes longer than the stream update frequency, a backlog of unacknowledged messages will develop.
TDA has been observed to terminate connections when many messages are unacknowledged.

Fixing this is a task for the application developer: if you are writing to a database or filesystem as part of your handler,
consider profiling it to make the write faster. You may also consider deferring your writes so that slow operations don’t
happen in the hotpath of the message handler.

4.9.3 JSONDecodeError

This is an error that is most often raised when TDA sends an invalid JSON string. See Custom JSON Decoding for
details.

For reasons known only to TDAmeritrade’s development team, the API occasionally emits invalid stream messages
for some endpoints. Because this issue does not affect all endpoints, and because tda-api’s authors are not in the
business of handling quirks of an API they don’t control, the library simply passes these errors up to the user.

However, some applications cannot handle complete failure. What’s more, some users have insight into how to work
around these decoder errors. The streaming client supports setting a custom JSON decoder to help with this:

StreamClient.set_json_decoder(json_decoder)
Sets a custom JSON decoder.

Parameters json_decoder – Custom JSON decoder to use for to decode all incoming JSON
strings. See StreamJsonDecoder for details.

Users are free to implement their own JSON decoders by subclassing the following abstract base class:

4.9. Troubleshooting 47

tda-api

class tda.streaming.StreamJsonDecoder

decode_json_string(raw)
Parse a JSON-formatted string into a proper object. Raises JSONDecodeError on parse failure.

Users looking for an out-of-the-box solution can consider using the community-maintained decoder described in
Custom JSON Decoding. Note that while this decoder is constantly improving, it is not guaranteed to solve whatever
JSON decoding errors your may be encountering.

48 Chapter 4. Streaming Client

CHAPTER 5

Order Templates

tda-api strives to be easy to use. This means making it easy to do simple things, while making it possible to do
complicated things. Order construction is a major challenge to this mission: both simple and complicated orders use
the same format, meaning simple orders require a surprising amount of sophistication to place.

We get around this by providing templates that make it easy to place common orders, while allowing advanced users to
modify the orders returned from the templates to create more complex ones. Very advanced users can even create their
own orders from scratch. This page describes the simple templates, while the OrderBuilder Reference page documents
the order builder in all its complexity.

5.1 Using These Templates

These templates serve two purposes. First, they are designed to choose defaults so you can immediately place them.
These defaults are:

• All orders execute during the current normal trading session. If placed outside of trading hours, the execute
during the next normal trading session.

• Time-in-force is set to DAY.

• All other fields (such as requested destination, etc.) are left unset, meaning they receive default treatment from
TD Ameritrade. Note this treatment depends on TDA’s implementation, and may change without warning.

Secondly, they serve as starting points for building more complex order types. All templates return a pre-populated
OrderBuilder object, meaning complex functionality can be specified by modifying the returned object. For
example, here is how you would place an order to buy GOOG for no more than $1250 at any time in the next six
months:

from tda.orders.equities import equity_buy_limit
from tda.orders.common import Duration, Session

client = ... # See "Authentication and Client Creation"

client.place_order(

(continues on next page)

49

tda-api

(continued from previous page)

1000, # account_id
equity_buy_limit('GOOG', 1, 1250.0)

.set_duration(Duration.GOOD_TILL_CANCEL)

.set_session(Session.SEAMLESS)

.build())

You can find a full reference for all supported fields in OrderBuilder Reference.

5.2 Equity Templates

5.2.1 Buy orders

tda.orders.equities.equity_buy_market(symbol, quantity)
Returns a pre-filled OrderBuilder for an equity buy market order.

tda.orders.equities.equity_buy_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for an equity buy limit order.

5.2.2 Sell orders

tda.orders.equities.equity_sell_market(symbol, quantity)
Returns a pre-filled OrderBuilder for an equity sell market order.

tda.orders.equities.equity_sell_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for an equity sell limit order.

5.2.3 Sell short orders

tda.orders.equities.equity_sell_short_market(symbol, quantity)
Returns a pre-filled OrderBuilder for an equity short sell market order.

tda.orders.equities.equity_sell_short_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for an equity short sell limit order.

5.2.4 Buy to cover orders

tda.orders.equities.equity_buy_to_cover_market(symbol, quantity)
Returns a pre-filled OrderBuilder for an equity buy-to-cover market order.

tda.orders.equities.equity_buy_to_cover_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for an equity buy-to-cover limit order.

5.3 Options Templates

TD Ameritrade supports over a dozen options strategies, each of which involve a precise structure in the order builder.
tda-api is slowly gaining support for these strategies, and they are documented here as they become ready for use.
As time goes on, more templates will be added here.

50 Chapter 5. Order Templates

tda-api

In the meantime, you can construct all supported options orders using the OrderBuilder, although you will have to
construct them yourself.

Note orders placed using these templates may be rejected, depending on the user’s options trading authorization.

5.3.1 Building Options Symbols

All templates require option symbols, which are somewhat more involved than equity symbols. They encode the
underlying, the expiration date, option type (put or call) and the strike price. They are especially tricky to extract
because both the TD Ameritrade UI and the thinkorswim UI don’t reveal the symbol in the option chain view.

Real trading symbols can be found by requesting the Option Chain. They can also be built using the OptionSymbol
helper, which provides utilities for creating options symbols. Note it only emits syntactically correct symbols and does
not validate whether the symbol actually represents a traded option:

from tda.order.options import OptionSymbol

symbol = OptionSymbol(
'TSLA', datetime.date(year=2020, month=11, day=20), 'P', '1360').build()

class tda.orders.options.OptionSymbol(underlying_symbol, expiration_date, contract_type,
strike_price_as_string)

Construct an option symbol from its constituent parts. Options symbols have the following
format: [Underlying]_[Two digit month][Two digit day][Two digit year]['P' or
'C'][Strike price]. Examples include:

• GOOG_012122P620: GOOG Jan 21 2022 620 Put

• TSLA_112020C1360: TSLA Nov 20 2020 1360 Call

• SPY_121622C335: SPY Dec 16 2022 335 Call

Note while each of the individual parts is validated by itself, the option symbol itself may not represent a traded
option:

• Some underlyings do not support options.

• Not all dates have valid option expiration dates.

• Not all strike prices are valid options strikes.

You can use get_option_chain() to obtain real option symbols for an underlying, as well as extensive
data in pricing, bid/ask spread, volume, etc.

Parameters

• underlying_symbol – Symbol of the underlying. Not validated.

• expiration_date – Expiration date. Accepts datetime.date, datetime.
datetime, or strings with the format [Two digit month][Two digit
day][Two digit year].

• contract_type – P for put or C for call.

• strike_price_as_string – Strike price, represented by a string as you would see at
the end of a real option symbol.

5.3.2 Single Options

Buy and sell single options.

5.3. Options Templates 51

tda-api

tda.orders.options.option_buy_to_open_market(symbol, quantity)
Returns a pre-filled OrderBuilder for a buy-to-open market order.

tda.orders.options.option_buy_to_open_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for a buy-to-open limit order.

tda.orders.options.option_sell_to_open_market(symbol, quantity)
Returns a pre-filled OrderBuilder for a sell-to-open market order.

tda.orders.options.option_sell_to_open_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for a sell-to-open limit order.

tda.orders.options.option_buy_to_close_market(symbol, quantity)
Returns a pre-filled OrderBuilder for a buy-to-close market order.

tda.orders.options.option_buy_to_close_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for a buy-to-close limit order.

tda.orders.options.option_sell_to_close_market(symbol, quantity)
Returns a pre-filled OrderBuilder for a sell-to-close market order.

tda.orders.options.option_sell_to_close_limit(symbol, quantity, price)
Returns a pre-filled OrderBuilder for a sell-to-close limit order.

5.3.3 Vertical Spreads

Vertical spreads are a complex option strategy that provides both limited upside and limited downside. They are con-
structed using by buying an option at one strike while simultaneously selling another option with the same underlying
and expiration date, except with a different strike, and they can be constructed using either puts or call. You can find
more information about this strategy on Investopedia

tda-api provides utilities for opening and closing vertical spreads in various ways. It follows the standard (bull/
bear) (put/call) naming convention, where the name specifies the market attitude and the option type used in
construction.

For consistency’s sake, the option with the smaller strike price is always passed first, followed by the higher strike
option. You can find the option symbols by consulting the return value of the Option Chain client call.

Call Verticals

tda.orders.options.bull_call_vertical_open(long_call_symbol, short_call_symbol, quan-
tity, net_debit)

Returns a pre-filled OrderBuilder that opens a bull call vertical position. See Vertical Spreads for details.

tda.orders.options.bull_call_vertical_close(long_call_symbol, short_call_symbol, quan-
tity, net_credit)

Returns a pre-filled OrderBuilder that closes a bull call vertical position. See Vertical Spreads for details.

tda.orders.options.bear_call_vertical_open(short_call_symbol, long_call_symbol, quan-
tity, net_credit)

Returns a pre-filled OrderBuilder that opens a bear call vertical position. See Vertical Spreads for details.

tda.orders.options.bear_call_vertical_close(short_call_symbol, long_call_symbol, quan-
tity, net_debit)

Returns a pre-filled OrderBuilder that closes a bear call vertical position. See Vertical Spreads for details.

52 Chapter 5. Order Templates

https://www.investopedia.com/articles/active-trading/032614/which-vertical-option-spread-should-you-use.asp

tda-api

Put Verticals

tda.orders.options.bull_put_vertical_open(long_put_symbol, short_put_symbol, quantity,
net_credit)

Returns a pre-filled OrderBuilder that opens a bull put vertical position. See Vertical Spreads for details.

tda.orders.options.bull_put_vertical_close(long_put_symbol, short_put_symbol, quantity,
net_debit)

Returns a pre-filled OrderBuilder that closes a bull put vertical position. See Vertical Spreads for details.

tda.orders.options.bear_put_vertical_open(short_put_symbol, long_put_symbol, quantity,
net_debit)

Returns a pre-filled OrderBuilder that opens a bear put vertical position. See Vertical Spreads for details.

tda.orders.options.bear_put_vertical_close(short_put_symbol, long_put_symbol, quantity,
net_credit)

Returns a pre-filled OrderBuilder that closes a bear put vertical position. See Vertical Spreads for details.

5.4 Utility Methods

These methods return orders that represent complex multi-order strategies, namely “one cancels other” and “first
triggers second” strategies. Note they expect all their parameters to be of type OrderBuilder. You can construct
these orders using the templates above or by creating them from scratch.

Note that you do not construct composite orders by placing the constituent orders and then passing the results to the
utility methods:

order_one = c.place_order(config.account_id,
option_buy_to_open_limit(trade_symbol, contracts, safety_ask)
.set_duration(Duration.GOOD_TILL_CANCEL)
.set_session(Session.NORMAL)
.build())

order_two = c.place_order(config.account_id,
option_sell_to_close_limit(trade_symbol, half, double)
.set_duration(Duration.GOOD_TILL_CANCEL)
.set_session(Session.NORMAL)
.build())

THIS IS BAD, DO NOT DO THIS
exec_trade = c.place_order(config.account_id, first_triggers_second(order_one, order_
→˓two))

What’s happening here is both constituent orders are being executed, and then place_order will fail. Creating an
OrderBuilder defers their execution, subject to your composite order rules.

Note: It appears that using these methods requires disabling Advanced Features on your account. It is not entirely
clear why this is the case, but we’ve seen numerous reports of issues with OCO and trigger orders being resolved by
this method. You can disable advanced features by calling TDAmeritrade support and requesting that they be turned
off. If you need more help, we recommend joining our discord to ask the community for help.

tda.orders.common.one_cancels_other(order1, order2)
If one of the orders is executed, immediately cancel the other.

tda.orders.common.first_triggers_second(first_order, second_order)
If first_order is executed, immediately place second_order.

5.4. Utility Methods 53

https://discord.gg/M3vjtHj

tda-api

5.5 What happened to EquityOrderBuilder?

Long-time users and new users following outdated tutorials may notice that this documentation no longer mentions
the EquityOrderBuilder class. This class used to be used to create equities orders, and offered a subset of the
functionality offered by the OrderBuilder. This class has been removed in favor of the order builder and the above
templates.

54 Chapter 5. Order Templates

CHAPTER 6

OrderBuilder Reference

The Client.place_order() method expects a rather complex JSON object that describes the desired order.
TDA provides some example order specs to illustrate the process and provides a schema in the place order documenta-
tion, but beyond that we’re on our own. tda-api aims to be useful to everyone, from users who want to easily place
common equities and options trades, to advanced users who want to place complex multi-leg, multi-asset type trades.

For users interested in simple trades, tda-api supports pre-built Order Templates that allow fast construction of
many common trades. Advanced users can modify these trades however they like, and can even build trades from
scratch.

This page describes the features of the complete order schema in all their complexity. It is aimed at advanced users
who want to create complex orders. Less advanced users can use the order templates to create orders. If they find
themselves wanting to go beyond those templates, they can return to this page to learn how.

6.1 Optional: Order Specification Introduction

Before we dive in to creating order specs, let’s briefly introduce their structure. This section is optional, although users
wanting to use more advanced featured like stop prices and complex options orders will likely want to read it.

Here is an example of a spec that places a limit order to buy 13 shares of MSFT for no more than $190. This is exactly
the order that would be returned by tda.orders.equities.equity_buy_limit():

{
"session": "NORMAL",
"duration": "DAY",
"orderType": "LIMIT",
"price": "190.90",
"orderLegCollection": [

{
"instruction": "BUY",
"instrument": {

"assetType": "EQUITY",
"symbol": "MSFT"

(continues on next page)

55

https://developer.tdameritrade.com/content/place-order-samples
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0

tda-api

(continued from previous page)

},
"quantity": 1

}
],
"orderStrategyType": "SINGLE"

}

Some key points are:

• The LIMIT order type notifies TD that you’d like to place a limit order.

• The order strategy type is SINGLE, meaning this order is not a composite order.

• The order leg collection contains a single leg to purchase the equity.

• The price is specified outside the order leg. This may seem counterintuitive, but it’s important when placing
composite options orders.

If this seems like a lot of detail to specify a rather simple order, it is. The thing about the order spec object is that it
can express every order that can be made through the TD Ameritrade API. For an advanced example, here is a order
spec for a standing order to enter a long position in GOOG at $1310 or less that triggers a one-cancels-other order that
exits the position if the price rises to $1400 or falls below $1250:

{
"session": "NORMAL",
"duration": "GOOD_TILL_CANCEL",
"orderType": "LIMIT",
"price": "1310.00",
"orderLegCollection": [

{
"instruction": "BUY",
"instrument": {

"assetType": "EQUITY",
"symbol": "GOOG"

},
"quantity": 1

}
],
"orderStrategyType": "TRIGGER",
"childOrderStrategies": [

{
"orderStrategyType": "OCO",
"childOrderStrategies": [

{
"session": "NORMAL",
"duration": "GOOD_TILL_CANCEL",
"orderType": "LIMIT",
"price": "1400.00",
"orderLegCollection": [

{
"instruction": "SELL",
"instrument": {

"assetType": "EQUITY",
"symbol": "GOOG"

},
"quantity": 1

}
]

(continues on next page)

56 Chapter 6. OrderBuilder Reference

tda-api

(continued from previous page)

},
{

"session": "NORMAL",
"duration": "GOOD_TILL_CANCEL",
"orderType": "STOP_LIMIT",
"stopPrice": "1250.00",
"orderLegCollection": [

{
"instruction": "SELL",
"instrument": {

"assetType": "EQUITY",
"symbol": "GOOG"

},
"quantity": 1

}
]

}
]

}
]

}

While this looks complex, it can be broken down into the same components as the simpler buy order:

• This time, the LIMIT order type applies to the top-level order.

• The order strategy type is TRIGGER, which tells TD Ameritrade to hold off placing the the second order until
the first one completes.

• The order leg collection still contains a single leg, and the price is still defined outside the order leg. This is
typical for equities orders.

There are also a few things that aren’t there in the simple buy order:

• The childOrderStrategies contains the OCO order that is triggered when the first LIMIT order is exe-
cuted.

• If you look carefully, you’ll notice that the inner OCO is a fully-featured suborder in itself.

This order is large and complex, and it takes a lot of reading to understand what’s going on here. Fortunately for
you, you don’t have to; tda-api cuts down on this complexity by providing templates and helpers to make building
orders easy:

from tda.orders.common import OrderType
from tda.orders.generic import OrderBuilder

one_triggers_other(
equity_buy_limit('GOOG', 1, 1310),
one_cancels_other(

equity_sell_limit('GOOG', 1, 1400),
equity_sell_limit('GOOG', 1, 1240)

.set_order_type(OrderType.STOP_LIMIT)

.clear_price()

.set_stop_price(1250)
)

You can find the full listing of order templates and utility functions here.

Now that you have some background on how orders are structured, let’s dive into the order builder itself.

6.1. Optional: Order Specification Introduction 57

tda-api

6.2 Constructing OrderBuilder Objects from Historical Orders

TDAmeritrade supports a huge array of order specifications, including both equity and option orders, stop, condition-
als, etc. However, the exact format of these orders is tricky: if you don’t specify the order exactly how TDA expects
it, you’ll either have your order rejected for no reason, or you’ll end up placing a different order than you intended.

Meanwhile, thinkorswim and the TDAmeritrade web and app UIs let you easily place these orders, just not in a
programmatic way. tda-api helps bridge this gap by allowing you to place a complex order through your preferred
UI and then producing code that would have generated this order using tda-api. This process looks like this:

1. Place an order using your favorite UI.

2. Call the following script to generate code for the most recently-placed order:

tda-orders-codegen.py --token_file <your token file path> --api_key <your API key>

3. Copy-paste the resulting code and adapt it to your needs.

Note this script is installed by pip, and will only be accessible if you’ve added pip’s executable locations to your
$PATH. If you’re having a hard time, feel free to ask for help on our Discord server.

6.3 OrderBuilder Reference

This section provides a detailed reference of the generic order builder. You can use it to help build your own custom
orders, or you can modify the pre-built orders generated by tda-api’s order templates.

Unfortunately, this reference is largely reverse-engineered. It was initially generated from the schema provided in the
official API documents, but many of the finer points, such as which fields should be populated for which order types,
etc. are best guesses. If you find something is inaccurate or missing, please let us know.

That being said, experienced traders who understand how various order types and complex strategies work should find
this builder easy to use, at least for the order types with which they are familiar. Here are some resources you can use
to learn more, courtesy of the Securites and Exchange Commission:

• Trading Basics: Understanding the Different Ways to Buy and Sell Stock

• Trade Execution: What Every Investor Should Know

• Investor Bulletin: An Introduction to Options

You can also find TD Ameritrade’s official documentation on orders here, although it doesn’t actually cover all func-
tionality that tda-api supports.

6.3.1 Order Types

Here are the order types that can be used:

class tda.orders.common.OrderType
Type of equity or option order to place.

MARKET = 'MARKET'
Execute the order immediately at the best-available price. More Info.

LIMIT = 'LIMIT'
Execute the order at your price or better. More info.

STOP = 'STOP'
Wait until the price reaches the stop price, and then immediately place a market order. More Info.

58 Chapter 6. OrderBuilder Reference

https://discord.gg/nfrd9gh
https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0
https://github.com/alexgolec/tda-api/issues
https://www.sec.gov/investor/alerts/trading101basics.pdf
https://www.sec.gov/reportspubs/investor-publications/investorpubstradexechtm.html
https://www.sec.gov/oiea/investor-alerts-bulletins/ib_introductionoptions.html
https://www.tdameritrade.com/retail-en_us/resources/pdf/SDPS819.pdf
https://www.investopedia.com/terms/m/marketorder.asp
https://www.investopedia.com/terms/l/limitorder.asp
https://www.investopedia.com/terms/l/limitorder.asp

tda-api

STOP_LIMIT = 'STOP_LIMIT'
Wait until the price reaches the stop price, and then immediately place a limit order at the specified price.
More Info.

TRAILING_STOP = 'TRAILING_STOP'
Similar to STOP, except if the price moves in your favor, the stop price is adjusted in that direction. Places
a market order if the stop condition is met. More info.

TRAILING_STOP_LIMIT = 'TRAILING_STOP_LIMIT'
Similar to STOP_LIMIT, except if the price moves in your favor, the stop price is adjusted in that direction.
Places a limit order at the specified price if the stop condition is met. More info.

MARKET_ON_CLOSE = 'MARKET_ON_CLOSE'
Place the order at the closing price immediately upon market close. More info

EXERCISE = 'EXERCISE'
Exercise an option.

NET_DEBIT = 'NET_DEBIT'
Place an order for an options spread resulting in a net debit. More info

NET_CREDIT = 'NET_CREDIT'
Place an order for an options spread resulting in a net credit. More info

NET_ZERO = 'NET_ZERO'
Place an order for an options spread resulting in neither a credit nor a debit. More info

OrderBuilder.set_order_type(order_type)
Set the order type. See OrderType for details.

OrderBuilder.clear_order_type()
Clear the order type.

6.3.2 Session and Duration

Together, these fields control when the order will be placed and how long it will remain active. Note tda-api’s
templates place orders that are active for the duration of the current normal trading session. If you want to modify the
default session and duration, you can use these methods to do so.

class tda.orders.common.Session
The market session during which the order trade should be executed.

NORMAL = 'NORMAL'
Normal market hours, from 9:30am to 4:00pm Eastern.

AM = 'AM'
Premarket session, from 8:00am to 9:30am Eastern.

PM = 'PM'
After-market session, from 4:00pm to 8:00pm Eastern.

SEAMLESS = 'SEAMLESS'
Orders are active during all trading sessions except the overnight session. This is the union of NORMAL,
AM, and PM.

class tda.orders.common.Duration
Length of time over which the trade will be active.

DAY = 'DAY'
Cancel the trade at the end of the trading day. Note if the order cannot be filled all at once, you may see
partial executions throughout the day.

6.3. OrderBuilder Reference 59

https://www.investopedia.com/terms/s/stop-limitorder.asp
https://www.investopedia.com/terms/t/trailingstop.asp
https://www.investopedia.com/terms/t/trailingstop.asp
https://www.investopedia.com/terms/m/marketonclose.asp
https://www.investopedia.com/ask/answers/042215/whats-difference-between-credit-spread-and-debt-spread.asp
https://www.investopedia.com/ask/answers/042215/whats-difference-between-credit-spread-and-debt-spread.asp
https://www.investopedia.com/ask/answers/042215/whats-difference-between-credit-spread-and-debt-spread.asp

tda-api

GOOD_TILL_CANCEL = 'GOOD_TILL_CANCEL'
Keep the trade open for six months, or until the end of the cancel date, whichever is shorter. Note if the
order cannot be filled all at once, you may see partial executions over the lifetime of the order.

FILL_OR_KILL = 'FILL_OR_KILL'
Either execute the order immediately at the specified price, or cancel it immediately.

OrderBuilder.set_duration(duration)
Set the order duration. See Duration for details.

OrderBuilder.clear_duration()
Clear the order duration.

OrderBuilder.set_session(session)
Set the order session. See Session for details.

OrderBuilder.clear_session()
Clear the order session.

6.3.3 Price

Price is the amount you’d like to pay for each unit of the position you’re taking:

• For equities and simple options limit orders, this is the price which you’d like to pay/receive.

• For complex options limit orders (net debit/net credit), this is the total credit or debit you’d like to receive.

In other words, the price is the sum of the prices of the Order Legs. This is particularly powerful for complex multi-leg
options orders, which support complex top and/or limit orders that trigger when the price of a position reaches certain
levels. In those cases, the price of an order can drop below the specified price as a result of movements in multiple
legs of the trade.

Note on Truncation

Important Note: Under the hood, the TDAmeritrade API expects price as a string, whereas tda-api allows setting
prices as a floating point number for convenience. The passed value is then converted to a string under the hood, which
involves some truncation logic:

• If the price has absolute value less than one, truncate (not round!) to four decimal places. For example, 0.186992
will become 0.1869.

• For all other values, truncate to two decimal places. The above example would become 0.18.

This behavior is meant as a sane heuristic, and there are almost certainly situations where it is not the correct thing to
do. You can sidestep this entire process by passing your price as a string, although be forewarned that TDAmeritrade
may reject your order or even interpret it in unexpected ways.

OrderBuilder.set_price(price)
Set the order price. Note price can be passed as either a float or an str. See Note on Truncation.

OrderBuilder.copy_price(price)
Directly set the stop price, avoiding all the validation and truncation logic from set_price().

OrderBuilder.clear_price()
Clear the order price

60 Chapter 6. OrderBuilder Reference

tda-api

6.3.4 Order Legs

Order legs are where the actual assets being bought or sold are specified. For simple equity or single-options orders,
there is just one leg. However, for complex multi-leg options trades, there can be more than one leg.

Note that order legs often do not execute all at once. Order legs can be executed over the specified Duration of the
order. What’s more, if order legs request a large number of shares, legs themselves can be partially filled. You can
control this setting using the SpecialInstruction value ALL_OR_NONE.

With all that out of the way, order legs are relatively simple to specify. tda-api currently supports equity and option
order legs:

OrderBuilder.add_equity_leg(instruction, symbol, quantity)
Add an equity order leg.

Parameters

• instruction – Instruction for the leg. See EquityInstruction for valid options.

• symbol – Equity symbol

• quantity – Number of shares for the order

class tda.orders.common.EquityInstruction
Instructions for opening and closing equity positions.

BUY = 'BUY'
Open a long equity position

SELL = 'SELL'
Close a long equity position

SELL_SHORT = 'SELL_SHORT'
Open a short equity position

BUY_TO_COVER = 'BUY_TO_COVER'
Close a short equity position

OrderBuilder.add_option_leg(instruction, symbol, quantity)
Add an option order leg.

Parameters

• instruction – Instruction for the leg. See OptionInstruction for valid options.

• symbol – Option symbol

• quantity – Number of contracts for the order

class tda.orders.common.OptionInstruction
Instructions for opening and closing options positions.

BUY_TO_OPEN = 'BUY_TO_OPEN'
Enter a new long option position

SELL_TO_CLOSE = 'SELL_TO_CLOSE'
Exit an existing long option position

SELL_TO_OPEN = 'SELL_TO_OPEN'
Enter a short position in an option

BUY_TO_CLOSE = 'BUY_TO_CLOSE'
Exit an existing short position in an option

6.3. OrderBuilder Reference 61

tda-api

OrderBuilder.clear_order_legs()
Clear all order legs.

6.3.5 Requested Destination

By default, TD Ameritrade sends trades to whichever exchange provides the best price. This field allows you to request
a destination exchange for your trade, although whether your order is actually executed there is up to TDA.

class tda.orders.common.Destination
Destinations for when you want to request a specific destination for your order.

INET = 'INET'

ECN_ARCA = 'ECN_ARCA'

CBOE = 'CBOE'

AMEX = 'AMEX'

PHLX = 'PHLX'

ISE = 'ISE'

BOX = 'BOX'

NYSE = 'NYSE'

NASDAQ = 'NASDAQ'

BATS = 'BATS'

C2 = 'C2'

AUTO = 'AUTO'

OrderBuilder.set_requested_destination(requested_destination)
Set the requested destination. See Destination for details.

OrderBuilder.clear_requested_destination()
Clear the requested destination.

6.3.6 Special Instructions

Trades can contain special instructions which handle some edge cases:

class tda.orders.common.SpecialInstruction
Special instruction for trades.

ALL_OR_NONE = 'ALL_OR_NONE'
Disallow partial order execution. More info.

DO_NOT_REDUCE = 'DO_NOT_REDUCE'
Do not reduce order size in response to cash dividends. More info.

ALL_OR_NONE_DO_NOT_REDUCE = 'ALL_OR_NONE_DO_NOT_REDUCE'
Combination of ALL_OR_NONE and DO_NOT_REDUCE.

OrderBuilder.set_special_instruction(special_instruction)
Set the special instruction. See SpecialInstruction for details.

OrderBuilder.clear_special_instruction()
Clear the special instruction.

62 Chapter 6. OrderBuilder Reference

https://www.investopedia.com/terms/a/aon.asp
https://www.investopedia.com/terms/d/dnr.asp

tda-api

6.3.7 Complex Options Strategies

TD Ameritrade supports a number of complex options strategies. These strategies are complex affairs, with each leg
of the trade specified in the order legs. TD performs additional validation on these strategies, so they are somewhat
complicated to place. However, the benefit is more flexibility, as trades like trailing stop orders based on net debit/credit
can be specified.

Unfortunately, due to the complexity of these orders and the lack of any real documentation, we cannot offer defini-
tively say how to structure these orders. A few things have been observed, however:

• The legs of the order can be placed by adding them as option order legs using add_option_leg().

• For spreads resulting in a new debit/credit, the price represents the overall debit or credit desired.

If you successfully use these strategies, we want to know about it. Please let us know by joining our Discord server to
chat about it, or by creating a feature request.

class tda.orders.common.ComplexOrderStrategyType
Explicit order strategies for executing multi-leg options orders.

NONE = 'NONE'
No complex order strategy. This is the default.

COVERED = 'COVERED'
Covered call

VERTICAL = 'VERTICAL'
Vertical spread

BACK_RATIO = 'BACK_RATIO'
Ratio backspread

CALENDAR = 'CALENDAR'
Calendar spread

DIAGONAL = 'DIAGONAL'
Diagonal spread

STRADDLE = 'STRADDLE'
Straddle spread

STRANGLE = 'STRANGLE'
Strandle spread

COLLAR_SYNTHETIC = 'COLLAR_SYNTHETIC'

BUTTERFLY = 'BUTTERFLY'
Butterfly spread

CONDOR = 'CONDOR'
Condor spread

IRON_CONDOR = 'IRON_CONDOR'
Iron condor spread

VERTICAL_ROLL = 'VERTICAL_ROLL'
Roll a vertical spread

COLLAR_WITH_STOCK = 'COLLAR_WITH_STOCK'
Collar strategy

DOUBLE_DIAGONAL = 'DOUBLE_DIAGONAL'
Double diagonal spread

6.3. OrderBuilder Reference 63

https://discord.gg/nfrd9gh
https://github.com/alexgolec/tda-api/issues
https://tickertape.tdameritrade.com/trading/selling-covered-call-options-strategy-income-hedging-15135
https://tickertape.tdameritrade.com/trading/vertical-credit-spreads-high-probability-15846
https://tickertape.tdameritrade.com/trading/pricey-stocks-ratio-spreads-15306
https://tickertape.tdameritrade.com/trading/calendar-spreads-trading-primer-15095
https://tickertape.tdameritrade.com/trading/love-your-diagonal-spread-15030
https://tickertape.tdameritrade.com/trading/straddle-strangle-option-volatility-16208
https://tickertape.tdameritrade.com/trading/straddle-strangle-option-volatility-16208
https://tickertape.tdameritrade.com/trading/butterfly-spread-options-15976
https://www.investopedia.com/terms/c/condorspread.asp
https://tickertape.tdameritrade.com/trading/iron-condor-options-spread-your-trading-wings-15948
https://tickertape.tdameritrade.com/trading/exit-winning-losing-trades-16685
https://tickertape.tdameritrade.com/trading/stock-hedge-options-collars-15529
https://optionstradingiq.com/the-ultimate-guide-to-double-diagonal-spreads/

tda-api

UNBALANCED_BUTTERFLY = 'UNBALANCED_BUTTERFLY'
Unbalanced butterfy spread

UNBALANCED_CONDOR = 'UNBALANCED_CONDOR'

UNBALANCED_IRON_CONDOR = 'UNBALANCED_IRON_CONDOR'

UNBALANCED_VERTICAL_ROLL = 'UNBALANCED_VERTICAL_ROLL'

CUSTOM = 'CUSTOM'
A custom multi-leg order strategy.

OrderBuilder.set_complex_order_strategy_type(complex_order_strategy_type)
Set the complex order strategy type. See ComplexOrderStrategyType for details.

OrderBuilder.clear_complex_order_strategy_type()
Clear the complex order strategy type.

6.3.8 Composite Orders

tda-api supports composite order strategies, in which execution of one order has an effect on another:

• OCO, or “one cancels other” orders, consist of a pair of orders where execution of one immediately cancels the
other.

• TRIGGER orders consist of a pair of orders where execution of one immediately results in placement of the
other.

tda-api provides helpers to specify these easily: one_cancels_other() and
first_triggers_second(). This is almost certainly easier than specifying these orders manually. However, if
you still want to create them yourself, you can specify these composite order strategies like so:

class tda.orders.common.OrderStrategyType
Rules for composite orders.

SINGLE = 'SINGLE'
No chaining, only a single order is submitted

OCO = 'OCO'
Execution of one order cancels the other

TRIGGER = 'TRIGGER'
Execution of one order triggers placement of the other

OrderBuilder.set_order_strategy_type(order_strategy_type)
Set the order strategy type. See OrderStrategyType for more details.

OrderBuilder.clear_order_strategy_type()
Clear the order strategy type.

6.3.9 Undocumented Fields

Unfortunately, your humble author is not an expert in all things trading. The order spec schema describes some things
that are outside my ability to document, so rather than make stuff up, I’m putting them here in the hopes that someone
will come along and shed some light on them. You can make suggestions by filing an issue on our GitHub issues page,
or by joining our Discord server.

64 Chapter 6. OrderBuilder Reference

https://tickertape.tdameritrade.com/trading/unbalanced-butterfly-strong-directional-bias-15913
https://github.com/alexgolec/tda-api/issues
https://discord.gg/M3vjtHj

tda-api

Quantity

This one seems obvious: doesn’t the quantity mean the number of stock I want to buy? The trouble is that the order
legs also have a quantity field, which suggests this field means something else. The leading hypothesis is that is
outlines the number of copies of the order to place, although we have yet to verify that.

OrderBuilder.set_quantity(quantity)
Exact semantics unknown. See Quantity for a discussion.

OrderBuilder.clear_quantity()
Clear the order-level quantity. Note this does not affect order legs.

Stop Order Configuration

Stop orders and their variants (stop limit, trailing stop, trailing stop limit) support some rather complex configuration.
Both stops prices and the limit prices of the resulting order can be configured to follow the market in a dynamic fashion.
The market dimensions that they follow can also be configured differently, and it appears that which dimensions are
supported varies by order type.

We have unfortunately not yet done a thorough analysis of what’s supported, nor have we made the effort to make it
simple and easy. While we’re pretty sure we understand how these fields work, they’ve been temporarily placed into
the “undocumented” section, pending a followup. Users are invited to experiment with these fields at their own risk.

OrderBuilder.set_stop_price(stop_price)
Set the stop price. Note price can be passed as either a float or an str. See Note on Truncation.

OrderBuilder.copy_stop_price(stop_price)
Directly set the stop price, avoiding all the validation and truncation logic from set_stop_price().

OrderBuilder.clear_stop_price()
Clear the stop price.

class tda.orders.common.StopPriceLinkBasis
An enumeration.

MANUAL = 'MANUAL'

BASE = 'BASE'

TRIGGER = 'TRIGGER'

LAST = 'LAST'

BID = 'BID'

ASK = 'ASK'

ASK_BID = 'ASK_BID'

MARK = 'MARK'

AVERAGE = 'AVERAGE'

OrderBuilder.set_stop_price_link_basis(stop_price_link_basis)
Set the stop price link basis. See StopPriceLinkBasis for details.

OrderBuilder.clear_stop_price_link_basis()
Clear the stop price link basis.

class tda.orders.common.StopPriceLinkType
An enumeration.

VALUE = 'VALUE'

6.3. OrderBuilder Reference 65

tda-api

PERCENT = 'PERCENT'

TICK = 'TICK'

OrderBuilder.set_stop_price_link_type(stop_price_link_type)
Set the stop price link type. See StopPriceLinkType for details.

OrderBuilder.clear_stop_price_link_type()
Clear the stop price link type.

OrderBuilder.set_stop_price_offset(stop_price_offset)
Set the stop price offset.

OrderBuilder.clear_stop_price_offset()
Clear the stop price offset.

class tda.orders.common.StopType
An enumeration.

STANDARD = 'STANDARD'

BID = 'BID'

ASK = 'ASK'

LAST = 'LAST'

MARK = 'MARK'

OrderBuilder.set_stop_type(stop_type)
Set the stop type. See StopType for more details.

OrderBuilder.clear_stop_type()
Clear the stop type.

class tda.orders.common.PriceLinkBasis
An enumeration.

MANUAL = 'MANUAL'

BASE = 'BASE'

TRIGGER = 'TRIGGER'

LAST = 'LAST'

BID = 'BID'

ASK = 'ASK'

ASK_BID = 'ASK_BID'

MARK = 'MARK'

AVERAGE = 'AVERAGE'

OrderBuilder.set_price_link_basis(price_link_basis)
Set the price link basis. See PriceLinkBasis for details.

OrderBuilder.clear_price_link_basis()
Clear the price link basis.

class tda.orders.common.PriceLinkType
An enumeration.

VALUE = 'VALUE'

PERCENT = 'PERCENT'

66 Chapter 6. OrderBuilder Reference

tda-api

TICK = 'TICK'

OrderBuilder.set_price_link_type(price_link_type)
Set the price link type. See PriceLinkType for more details.

OrderBuilder.clear_price_link_type()
Clear the price link basis.

OrderBuilder.set_activation_price(activation_price)
Set the activation price.

OrderBuilder.clear_activation_price()
Clear the activation price.

6.3. OrderBuilder Reference 67

tda-api

68 Chapter 6. OrderBuilder Reference

CHAPTER 7

Utilities

This section describes miscellaneous utility methods provided by tda-api. All utilities are presented under the
Utils class:

class tda.utils.Utils(client, account_id)
Helper for placing orders on equities. Provides easy-to-use implementations for common tasks such as market
and limit orders.

__init__(client, account_id)
Creates a new Utils instance. For convenience, this object assumes the user wants to work with a single
account ID at a time.

set_account_id(account_id)
Set the account ID used by this Utils instance.

7.1 Get the Most Recent Order

For successfully placed orders, tda.client.Client.place_order() returns the ID of the newly created
order, encoded in the r.headers['Location'] header. This method inspects the response and extracts the order
ID from the contents, if it’s there. This order ID can then be used to monitor or modify the order as described in the
Client documentation. Example usage:

Assume client and order already exist and are valid
account_id = 123456
r = client.place_order(account_id, order)
assert r.status_code == httpx.codes.OK, r.raise_for_status()
order_id = Utils(client, account_id).extract_order_id(r)
assert order_id is not None

Utils.extract_order_id(place_order_response)
Attempts to extract the order ID from a response object returned by Client.place_order(). Return None
if the order location is not contained in the response.

69

tda-api

Parameters place_order_response – Order response as returned by Client.
place_order(). Note this method requires that the order was successful.

Raises ValueError – if the order was not succesful or if the order’s account ID is not equal to the
account ID set in this Utils object.

70 Chapter 7. Utilities

CHAPTER 8

Example Application

To illustrate some of the functionality of tda-api, here is an example application that finds stocks that pay a dividend
during the month of your birthday and purchases one of each.

import atexit
import datetime
import dateutil
import httpx
import sys
import tda

API_KEY = 'XXXXXX@AMER.OAUTHAP'
REDIRECT_URI = 'https://localhost:8080/'
TOKEN_PATH = 'ameritrade-credentials.json'
YOUR_BIRTHDAY = datetime.datetime(year=1969, month=4, day=20)
SP500_URL = "https://tda-api.readthedocs.io/en/latest/_static/sp500.txt"

def make_webdriver():
Import selenium here because it's slow to import
from selenium import webdriver

driver = webdriver.Chrome()
atexit.register(lambda: driver.quit())
return driver

Create a new client
client = tda.auth.easy_client(

API_KEY,
REDIRECT_URI,
TOKEN_PATH,
make_webdriver)

Load S&P 500 composition from documentation

(continues on next page)

71

tda-api

(continued from previous page)

sp500 = httpx.get(
SP500_URL, headers={

"User-Agent": "Mozilla/5.0"}).read().decode().split()

Fetch fundamentals for all symbols and filter out the ones with ex-dividend
dates in the future and dividend payment dates on your birth month. Note we
perform the fetch in two calls because the API places an upper limit on the
number of symbols you can fetch at once.
today = datetime.datetime.today()
birth_month_dividends = []
for s in (sp500[:250], sp500[250:]):

r = client.search_instruments(
s, tda.client.Client.Instrument.Projection.FUNDAMENTAL)

assert r.status_code == httpx.codes.OK, r.raise_for_status()

for symbol, f in r.json().items():

Parse ex-dividend date
ex_div_string = f['fundamental']['dividendDate']
if not ex_div_string.strip():

continue
ex_dividend_date = dateutil.parser.parse(ex_div_string)

Parse payment date
pay_date_string = f['fundamental']['dividendPayDate']
if not pay_date_string.strip():

continue
pay_date = dateutil.parser.parse(pay_date_string)

Check dates
if (ex_dividend_date > today

and pay_date.month == YOUR_BIRTHDAY.month):
birth_month_dividends.append(symbol)

if not birth_month_dividends:
print('Sorry, no stocks are paying out in your birth month yet. This is ',

'most likely because the dividends haven\'t been announced yet. ',
'Try again closer to your birthday.')

sys.exit(1)

Purchase one share of each the stocks that pay in your birthday month.
account_id = int(input(

'Input your TDA account number to place orders (<Ctrl-C> to quit): '))
for symbol in birth_month_dividends:

print('Buying one share of', symbol)

Build the order spec and place the order
order = tda.orders.equities.equity_buy_market(symbol, 1)

r = client.place_order(account_id, order)
assert r.status_code == httpx.codes.OK, r.raise_for_status()

72 Chapter 8. Example Application

CHAPTER 9

Getting Help

Even the most experienced developer needs help on occasion. This page describes how you can get help and make
progress.

9.1 Asking for Help on Discord

tda-api has a vibrant community that hangs out in our discord server. If you’re having any sort of trouble, this
server should be your first stop. Just make sure you follow a few rules to ask for help.

9.1.1 Provide Adequate Information

Nothing makes it easier to help you than information. The more information you provide, the easier it’ll be to help
you. If you are asking for advice on how to do something, share whatever code you’ve written or research you’ve
performed. If you’re asking for help about an error, make sure you provide at least the following information:

1. Your OS (Windows? Mac OS? Linux?) and execution environment (VSCode? A raw terminal? A docker
container in the cloud?)

2. Your tda-api version. You can see this by executing print(tda.__version__) in a python shell.

3. The full stack trace and error message. Descriptions of errors will be met with requests to provide more infor-
mation.

4. Code that reproduces the error. If you’re shy about your code, write a small script that reproduces the error when
run.

Optionally, you may want to share diagnostic logs generated by tda-api. Not only does this provide even more
information to the community, reading through the logs might also help you solve the problem yourself. You can read
about enabling logging here.

73

https://discord.gg/M3vjtHj

tda-api

9.1.2 Format Your Request Properly

Take advantage of Discord’s wonderful support for code blocks and format your error, stack traces, and code using
triple backticks. To do this, put ``` before and after your message. Failing to do this will be met with a request to
edit your message to be better formatted.

9.2 Reporting a Bug

tda-api is not perfect. Features are missing, documentation may be out of date, and it almost certainly contains
bugs. If you think of a way in which tda-api can be improved, we’re more than happy to hear it.

This section outlines the process for getting help if you found a bug. If you need general help using tda-api, or just
want to chat with other people interested in developing trading strategies, you can join our discord.

If you still want to submit an issue, we ask that you follow a few guidelines to make everyone’s lives easier:

9.2.1 Enable Logging

Behind the scenes, tda-api performs diagnostic logging of its activity using Python’s logging module. You can
enable this debug information by telling the root logger to print these messages:

import logging
logging.getLogger('').addHandler(logging.StreamHandler())

Sometimes, this additional logging is enough to help you debug. Before you ask for help, carefully read through your
logs to see if there’s anything there that helps you.

9.2.2 Gather Logs For Your Bug Report

If you still can’t figure out what’s going wrong, tda-api has special functionality for gathering and preparing logs
for filing issues. It works by capturing tda-api’s logs, anonymizing them, and then dumping them to the console
when the program exits. You can enable this by calling this method before doing anything else in your application:

tda.debug.enable_bug_report_logging()

This method will redact the logs to scrub them of common secrets, like account IDs, tokens, access keys, etc. However,
this redaction is not guaranteed to be perfect, and it is your responsibility to make sure they are clean before you ask
for help.

When filing a issue, please upload the logs along with your description. If you do not include logs with your issue,
your issue may be closed.

For completeness, here is this method’s documentation:

debug.enable_bug_report_logging()
Turns on bug report logging. Will collect all logged output, redact out anything that should be kept secret, and
emit the result at program exit.

Notes:

• This method does a best effort redaction. Never share its output without verifying that all secret
information is properly redacted.

• Because this function records all logged output, it has a performance penalty. It should not be called
in production code.

74 Chapter 9. Getting Help

https://support.discord.com/hc/en-us/articles/210298617-Markdown-Text-101-Chat-Formatting-Bold-Italic-Underline-
https://discord.gg/M3vjtHj
https://docs.python.org/3/library/logging.html

tda-api

9.2.3 Submit Your Ticket

You are now ready to write your bug. Before you do, be warned that your issue may be be closed if:

• It does not include code. The first thing we do when we receive your issue is we try to reproduce your failure.
We can’t do that if you don’t show us your code.

• It does not include logs. It’s very difficult to debug problems without logs.

• Logs are not adequately redacted. This is for your own protection.

• Logs are copy-pasted into the issue message field. Please write them to a file and attach them to your issue.

• You do not follow the issue template. We’re not super strict about this one, but you should at least include all
the information it asks for.

You can file an issue on our GitHub page.

9.2. Reporting a Bug 75

https://github.com/alexgolec/tda-api/issues

tda-api

76 Chapter 9. Getting Help

CHAPTER 10

Community-Contributed Functionality

When maintaining tda-api, the authors have two goals: make common things easy, and make uncommon things
possible. This meets the needs of vast majority of the community, while allowing advanced users or those with very
niche requirements to progress using potentially custom approaches.

However, this philosophy explicitly excludes functionality that is potentially useful to many users, but is either not
directly related to the core functionality of the API wrapper. This is where the contrib module comes into play.

This module is a collection of high-quality code that was produced by the community and for the community. It
includes utility methods that provide additional functionality beyond the core library, fixes for quirks in API behavior,
etc. This page lists the available functionality. If you’d like to discuss this or propose/request new additions, please
join our Discord server.

10.1 Custom JSON Decoding

TDA’s API occasionally emits invalid JSON in the stream. This class implements all known workarounds and hacks
to get around these quirks:

class tda.contrib.util.HeuristicJsonDecoder

decode_json_string(raw)
Attempts the following, in order:

1. Return the JSON decoding of the raw string.

2. Replace all instances of \\\\ with \\ and return the decoding.

Note alternative (and potentially expensive) transformations are only performed when
JSONDecodeError exceptions are raised by earlier stages.

You can use it as follows:

from tda.contrib.util import HeuristicJsonDecoder

(continues on next page)

77

https://discord.gg/Ddha8cm6dx

tda-api

(continued from previous page)

stream_client = # ... create your stream
stream_client.set_json_decoder(HeuristicJsonDecoder())
... continue as normal

If you encounter invalid stream items that are not fixed by using this decoder, please let us know in our Discord server
or follow the guide in Contributing to tda-api to add new functionality.

78 Chapter 10. Community-Contributed Functionality

https://discord.gg/Ddha8cm6dx

CHAPTER 11

Contributing to tda-api

Fixing a bug? Adding a feature? Just cleaning up for the sake of cleaning up? Great! No improvement is too small for
me, and I’m always happy to take pull requests. Read this guide to learn how to set up your environment so you can
contribute.

11.1 Setting up the Dev Environment

Dependencies are listed in the requirements.txt file. These development requirements are distinct from the require-
ments listed in setup.py and include some additional packages around testing, documentation generation, etc.

Before you install anything, I highly recommend setting up a virtualenv so you don’t pollute your system installation
directories:

pip install virtualenv
virtualenv -v virtualenv
source virtualenv/bin/activate

Next, install project requirements:

pip install -r requirements.txt

Finally, verify everything works by running tests:

make test

At this point you can make your changes.

Note that if you are using a virtual environment and switch to a new terminal your virtual environment will not be
active in the new terminal, and you need to run the activate command again. If you want to disable the loaded virtual
environment in the same terminal window, use the command:

deactivate

79

tda-api

11.2 Development Guidelines

11.2.1 Test your changes

This project aims for high test coverage. All changes must be properly tested, and we will accept no PRs that lack
appropriate unit testing. We also expect existing tests to pass. You can run your tests using:

make test

11.2.2 Document your code

Documentation is how users learn to use your code, and no feature is complete without a full description of how to use
it. If your PR changes external-facing interfaces, or if it alters semantics, the changes must be thoroughly described
in the docstrings of the affected components. If your change adds a substantial new module, a new section in the
documentation may be justified.

Documentation is built using Sphinx. You can build the documentation using the Makefile.sphinx makefile. For
example you can build the HTML documentation like so:

make -f Makefile.sphinx

80 Chapter 11. Contributing to tda-api

https://www.sphinx-doc.org/en/master/

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

Disclaimer: tda-api is an unofficial API wrapper. It is in no way endorsed by or affiliated with TD Ameritrade or any
associated organization. Make sure to read and understand the terms of service of the underlying API before using
this package. This authors accept no responsibility for any damage that might stem from use of this package. See the
LICENSE file for more details.

81

tda-api

82 Chapter 12. Indices and tables

Python Module Index

t
tda.auth, 4
tda.client, 9
tda.debug, 72
tda.orders, 48
tda.orders.generic, 54
tda.streaming, 23

83

tda-api

84 Python Module Index

Index

Symbols
__init__() (tda.client.Client method), 13
__init__() (tda.utils.Utils method), 69

A
ACCEPTED (tda.client.Client.Order.Status attribute), 14
Account (class in tda.client.Client), 15
ACCOUNT (tda.streaming.StreamClient.AccountActivityFields

attribute), 46
Account.Fields (class in tda.client.Client), 15
account_activity_sub()

(tda.streaming.StreamClient method), 46
add_account_activity_handler()

(tda.streaming.StreamClient method), 46
add_chart_equity_handler()

(tda.streaming.StreamClient method), 29
add_chart_futures_handler()

(tda.streaming.StreamClient method), 30
add_equity_leg() (tda.orders.generic.OrderBuilder

method), 61
add_level_one_equity_handler()

(tda.streaming.StreamClient method), 31
add_level_one_forex_handler()

(tda.streaming.StreamClient method), 39
add_level_one_futures_handler()

(tda.streaming.StreamClient method), 37
add_level_one_futures_options_handler()

(tda.streaming.StreamClient method), 40
add_level_one_option_handler()

(tda.streaming.StreamClient method), 34
add_listed_book_handler()

(tda.streaming.StreamClient method), 43
add_nasdaq_book_handler()

(tda.streaming.StreamClient method), 43
add_news_headline_handler()

(tda.streaming.StreamClient method), 45
add_option_leg() (tda.orders.generic.OrderBuilder

method), 61
add_options_book_handler()

(tda.streaming.StreamClient method), 43
add_timesale_equity_handler()

(tda.streaming.StreamClient method), 44
add_timesale_futures_handler()

(tda.streaming.StreamClient method), 44
add_timesale_options_handler()

(tda.streaming.StreamClient method), 44
ADVISORY_FEES (tda.client.Client.Transactions.TransactionType

attribute), 20
ALL (tda.client.Client.Options.ContractType attribute),

17
ALL (tda.client.Client.Options.StrikeRange attribute), 18
ALL (tda.client.Client.Options.Type attribute), 18
ALL (tda.client.Client.Transactions.TransactionType at-

tribute), 21
ALL_OR_NONE (tda.orders.common.SpecialInstruction

attribute), 62
ALL_OR_NONE_DO_NOT_REDUCE

(tda.orders.common.SpecialInstruction at-
tribute), 62

AM (tda.orders.common.Session attribute), 59
AMEX (tda.orders.common.Destination attribute), 62
ANALYTICAL (tda.client.Client.Options.Strategy at-

tribute), 17
APRIL (tda.client.Client.Options.ExpirationMonth at-

tribute), 17
ASK (tda.orders.common.PriceLinkBasis attribute), 66
ASK (tda.orders.common.StopPriceLinkBasis attribute),

65
ASK (tda.orders.common.StopType attribute), 66
ASK_BID (tda.orders.common.PriceLinkBasis at-

tribute), 66
ASK_BID (tda.orders.common.StopPriceLinkBasis at-

tribute), 65
ASK_ID (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 31
ASK_ID (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
ASK_ID (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41

85

tda-api

ASK_PRICE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 31

ASK_PRICE (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

ASK_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

ASK_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

ASK_PRICE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

ASK_SIZE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 31

ASK_SIZE (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

ASK_SIZE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

ASK_SIZE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

ASK_SIZE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

AUGUST (tda.client.Client.Options.ExpirationMonth at-
tribute), 17

AUTO (tda.orders.common.Destination attribute), 62
AVERAGE (tda.orders.common.PriceLinkBasis at-

tribute), 66
AVERAGE (tda.orders.common.StopPriceLinkBasis at-

tribute), 65
AWAITING_CONDITION

(tda.client.Client.Order.Status attribute),
14

AWAITING_MANUAL_REVIEW
(tda.client.Client.Order.Status attribute),
14

AWAITING_PARENT_ORDER
(tda.client.Client.Order.Status attribute),
14

AWAITING_UR_OUR (tda.client.Client.Order.Status at-
tribute), 14

B
BACK_RATIO (tda.orders.common.ComplexOrderStrategyType

attribute), 63
BASE (tda.orders.common.PriceLinkBasis attribute), 66
BASE (tda.orders.common.StopPriceLinkBasis at-

tribute), 65
BATS (tda.orders.common.Destination attribute), 62
bear_call_vertical_close() (in module

tda.orders.options), 52
bear_call_vertical_open() (in module

tda.orders.options), 52
bear_put_vertical_close() (in module

tda.orders.options), 53
bear_put_vertical_open() (in module

tda.orders.options), 53

BID (tda.orders.common.PriceLinkBasis attribute), 66
BID (tda.orders.common.StopPriceLinkBasis attribute),

65
BID (tda.orders.common.StopType attribute), 66
BID_ID (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 31
BID_ID (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
BID_ID (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
BID_PRICE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 31
BID_PRICE (tda.streaming.StreamClient.LevelOneForexFields

attribute), 39
BID_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
BID_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
BID_PRICE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 34
BID_SIZE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 31
BID_SIZE (tda.streaming.StreamClient.LevelOneForexFields

attribute), 39
BID_SIZE (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
BID_SIZE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
BID_SIZE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
BID_TICK (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32
BOND (tda.client.Client.Markets attribute), 21
BOX (tda.orders.common.Destination attribute), 62
bull_call_vertical_close() (in module

tda.orders.options), 52
bull_call_vertical_open() (in module

tda.orders.options), 52
bull_put_vertical_close() (in module

tda.orders.options), 53
bull_put_vertical_open() (in module

tda.orders.options), 53
BUTTERFLY (tda.client.Client.Options.Strategy at-

tribute), 17
BUTTERFLY (tda.orders.common.ComplexOrderStrategyType

attribute), 63
BUY (tda.orders.common.EquityInstruction attribute), 61
BUY_ONLY (tda.client.Client.Transactions.TransactionType

attribute), 21
BUY_TO_CLOSE (tda.orders.common.OptionInstruction

attribute), 61
BUY_TO_COVER (tda.orders.common.EquityInstruction

attribute), 61
BUY_TO_OPEN (tda.orders.common.OptionInstruction

86 Index

tda-api

attribute), 61

C
C2 (tda.orders.common.Destination attribute), 62
CALENDAR (tda.client.Client.Options.Strategy attribute),

17
CALENDAR (tda.orders.common.ComplexOrderStrategyType

attribute), 63
CALL (tda.client.Client.Options.ContractType attribute),

17
cancel_order() (tda.client.Client method), 15
CANCELED (tda.client.Client.Order.Status attribute), 14
CASH_IN_OR_CASH_OUT

(tda.client.Client.Transactions.TransactionType
attribute), 21

CBOE (tda.orders.common.Destination attribute), 62
CHART_DAY (tda.streaming.StreamClient.ChartEquityFields

attribute), 30
chart_equity_add() (tda.streaming.StreamClient

method), 29
chart_equity_subs() (tda.streaming.StreamClient

method), 29
chart_futures_add() (tda.streaming.StreamClient

method), 30
chart_futures_subs()

(tda.streaming.StreamClient method), 30
CHART_TIME (tda.streaming.StreamClient.ChartEquityFields

attribute), 30
CHART_TIME (tda.streaming.StreamClient.ChartFuturesFields

attribute), 30
CHECKING (tda.client.Client.Transactions.TransactionType

attribute), 21
clear_activation_price()

(tda.orders.generic.OrderBuilder method),
67

clear_complex_order_strategy_type()
(tda.orders.generic.OrderBuilder method), 64

clear_duration() (tda.orders.generic.OrderBuilder
method), 60

clear_order_legs()
(tda.orders.generic.OrderBuilder method),
61

clear_order_strategy_type()
(tda.orders.generic.OrderBuilder method),
64

clear_order_type()
(tda.orders.generic.OrderBuilder method),
59

clear_price() (tda.orders.generic.OrderBuilder
method), 60

clear_price_link_basis()
(tda.orders.generic.OrderBuilder method),
66

clear_price_link_type()
(tda.orders.generic.OrderBuilder method),
67

clear_quantity() (tda.orders.generic.OrderBuilder
method), 65

clear_requested_destination()
(tda.orders.generic.OrderBuilder method),
62

clear_session() (tda.orders.generic.OrderBuilder
method), 60

clear_special_instruction()
(tda.orders.generic.OrderBuilder method),
62

clear_stop_price()
(tda.orders.generic.OrderBuilder method),
65

clear_stop_price_link_basis()
(tda.orders.generic.OrderBuilder method),
65

clear_stop_price_link_type()
(tda.orders.generic.OrderBuilder method),
66

clear_stop_price_offset()
(tda.orders.generic.OrderBuilder method),
66

clear_stop_type()
(tda.orders.generic.OrderBuilder method),
66

client_from_access_functions() (in module
tda.auth), 7

client_from_login_flow() (in module tda.auth),
6

client_from_manual_flow() (in module
tda.auth), 6

client_from_token_file() (in module tda.auth),
7

CLOSE_PRICE (tda.streaming.StreamClient.ChartEquityFields
attribute), 30

CLOSE_PRICE (tda.streaming.StreamClient.ChartFuturesFields
attribute), 31

CLOSE_PRICE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

CLOSE_PRICE (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

CLOSE_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

CLOSE_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

CLOSE_PRICE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

COLLAR (tda.client.Client.Options.Strategy attribute), 17
COLLAR_SYNTHETIC (tda.orders.common.ComplexOrderStrategyType

attribute), 63
COLLAR_WITH_STOCK

Index 87

tda-api

(tda.orders.common.ComplexOrderStrategyType
attribute), 63

ComplexOrderStrategyType (class in
tda.orders.common), 63

CONDOR (tda.client.Client.Options.Strategy attribute), 17
CONDOR (tda.orders.common.ComplexOrderStrategyType

attribute), 63
CONTRACT_TYPE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
copy_price() (tda.orders.generic.OrderBuilder

method), 60
copy_stop_price()

(tda.orders.generic.OrderBuilder method),
65

COUNT_FOR_KEYWORD
(tda.streaming.StreamClient.NewsHeadlineFields
attribute), 45

COVERED (tda.client.Client.Options.Strategy attribute),
17

COVERED (tda.orders.common.ComplexOrderStrategyType
attribute), 63

create_saved_order() (tda.client.Client method),
21

create_watchlist() (tda.client.Client method), 23
CUSTOM (tda.orders.common.ComplexOrderStrategyType

attribute), 64

D
DAILY (tda.client.Client.PriceHistory.Frequency at-

tribute), 19
DAILY (tda.client.Client.PriceHistory.FrequencyType at-

tribute), 19
DAY (tda.client.Client.PriceHistory.PeriodType at-

tribute), 20
DAY (tda.orders.common.Duration attribute), 59
DAYS_TO_EXPIRATION

(tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

DECEMBER (tda.client.Client.Options.ExpirationMonth
attribute), 17

decode_json_string()
(tda.contrib.util.HeuristicJsonDecoder
method), 77

decode_json_string()
(tda.streaming.StreamJsonDecoder method),
48

DELAYED (tda.streaming.StreamClient.QOSLevel
attribute), 27

delete_saved_order() (tda.client.Client method),
21

delete_watchlist() (tda.client.Client method), 23
DELIVERABLES (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36

DELTA (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

DESC_REGEX (tda.client.Client.Instrument.Projection
attribute), 16

DESC_SEARCH (tda.client.Client.Instrument.Projection
attribute), 16

DESCRIPTION (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

DESCRIPTION (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

DESCRIPTION (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

DESCRIPTION (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

DESCRIPTION (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 34

Destination (class in tda.orders.common), 62
DIAGONAL (tda.client.Client.Options.Strategy attribute),

18
DIAGONAL (tda.orders.common.ComplexOrderStrategyType

attribute), 63
DIGITS (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
DIGITS (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
DIGITS (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35
DIVIDEND (tda.client.Client.Transactions.TransactionType

attribute), 21
DIVIDEND_AMOUNT (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
DIVIDEND_DATE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
DIVIDEND_YIELD (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
DO_NOT_REDUCE (tda.orders.common.SpecialInstruction

attribute), 62
DOUBLE_DIAGONAL (tda.orders.common.ComplexOrderStrategyType

attribute), 63
DOWN (tda.client.Client.Movers.Direction attribute), 22
Duration (class in tda.orders.common), 59

E
easy_client() (in module tda.auth), 7
ECN_ARCA (tda.orders.common.Destination attribute),

62
enable_bug_report_logging() (tda.debug

method), 74
EQUITY (tda.client.Client.Markets attribute), 22
equity_buy_limit() (in module

tda.orders.equities), 50
equity_buy_market() (in module

tda.orders.equities), 50

88 Index

tda-api

equity_buy_to_cover_limit() (in module
tda.orders.equities), 50

equity_buy_to_cover_market() (in module
tda.orders.equities), 50

equity_sell_limit() (in module
tda.orders.equities), 50

equity_sell_market() (in module
tda.orders.equities), 50

equity_sell_short_limit() (in module
tda.orders.equities), 50

equity_sell_short_market() (in module
tda.orders.equities), 50

EquityInstruction (class in tda.orders.common),
61

ERROR_CODE (tda.streaming.StreamClient.NewsHeadlineFields
attribute), 45

EVERY_FIFTEEN_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 19

EVERY_FIVE_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 19

EVERY_MINUTE (tda.client.Client.PriceHistory.Frequency
attribute), 19

EVERY_TEN_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 19

EVERY_THIRTY_MINUTES
(tda.client.Client.PriceHistory.Frequency
attribute), 19

EXCHANGE_ID (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

EXCHANGE_ID (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

EXCHANGE_ID (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

EXCHANGE_ID (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

EXCHANGE_NAME (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

EXCHANGE_NAME (tda.streaming.StreamClient.LevelOneForexFields
attribute), 40

EXCHANGE_NAME (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

EXCHANGE_NAME (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

EXERCISE (tda.orders.common.OrderType attribute), 59
EXPIRATION_DAY (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
EXPIRATION_MONTH (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
EXPIRATION_YEAR (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35
EXPIRED (tda.client.Client.Order.Status attribute), 14

EXPRESS (tda.streaming.StreamClient.QOSLevel
attribute), 26

extract_order_id() (tda.utils.Utils method), 69

F
FAST (tda.streaming.StreamClient.QOSLevel attribute),

26
FEBRUARY (tda.client.Client.Options.ExpirationMonth

attribute), 17
FIFTEEN_YEARS (tda.client.Client.PriceHistory.Period

attribute), 19
FILL_OR_KILL (tda.orders.common.Duration at-

tribute), 60
FILLED (tda.client.Client.Order.Status attribute), 14
first_triggers_second() (in module

tda.orders.common), 53
FIVE_DAYS (tda.client.Client.PriceHistory.Period at-

tribute), 19
FIVE_YEARS (tda.client.Client.PriceHistory.Period at-

tribute), 19
FOREX (tda.client.Client.Markets attribute), 22
FOUR_DAYS (tda.client.Client.PriceHistory.Period at-

tribute), 19
FUND_PRICE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
FUNDAMENTAL (tda.client.Client.Instrument.Projection

attribute), 16
FUTURE (tda.client.Client.Markets attribute), 22
FUTURE_ACTIVE_SYMBOL

(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_ACTIVE_SYMBOL
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_EXPIRATION_DATE
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_EXPIRATION_DATE
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_IS_ACTIVE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_IS_ACTIVE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_IS_TRADEABLE
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_IS_TRADEABLE
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_MULTIPLIER
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_MULTIPLIER

Index 89

tda-api

(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_PERCENT_CHANGE
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_PERCENT_CHANGE
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

FUTURE_PRICE_FORMAT
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_PRICE_FORMAT
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_SETTLEMENT_PRICE
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_SETTLEMENT_PRICE
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

FUTURE_TRADING_HOURS
(tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 38

FUTURE_TRADING_HOURS
(tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 42

G
GAMMA (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
get_account() (tda.client.Client method), 15
get_accounts() (tda.client.Client method), 15
get_hours_for_multiple_markets()

(tda.client.Client method), 21
get_hours_for_single_market()

(tda.client.Client method), 21
get_instrument() (tda.client.Client method), 15
get_movers() (tda.client.Client method), 22
get_option_chain() (tda.client.Client method), 16
get_order() (tda.client.Client method), 14
get_orders_by_path() (tda.client.Client method),

13
get_orders_by_query() (tda.client.Client

method), 14
get_preferences() (tda.client.Client method), 22
get_price_history() (tda.client.Client method),

18
get_quote() (tda.client.Client method), 20
get_quotes() (tda.client.Client method), 20
get_saved_order() (tda.client.Client method), 21
get_saved_orders_by_path() (tda.client.Client

method), 21
get_transaction() (tda.client.Client method), 20
get_transactions() (tda.client.Client method), 20

get_user_principals() (tda.client.Client
method), 22

get_watchlist() (tda.client.Client method), 23
get_watchlists_for_multiple_accounts()

(tda.client.Client method), 23
get_watchlists_for_single_account()

(tda.client.Client method), 23
GOOD_TILL_CANCEL (tda.orders.common.Duration

attribute), 59

H
HEADLINE (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
HEADLINE_ID (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
HeuristicJsonDecoder (class in tda.contrib.util),

77
HIGH_52_WEEK (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
HIGH_52_WEEK (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
HIGH_PRICE (tda.streaming.StreamClient.ChartEquityFields

attribute), 30
HIGH_PRICE (tda.streaming.StreamClient.ChartFuturesFields

attribute), 30
HIGH_PRICE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32
HIGH_PRICE (tda.streaming.StreamClient.LevelOneForexFields

attribute), 39
HIGH_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
HIGH_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
HIGH_PRICE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35

I
IN_THE_MONEY (tda.client.Client.Options.StrikeRange

attribute), 18
INET (tda.orders.common.Destination attribute), 62
Instrument (class in tda.client.Client), 16
Instrument.Projection (class in

tda.client.Client), 16
INTEREST (tda.client.Client.Transactions.TransactionType

attribute), 21
IRON_CONDOR (tda.orders.common.ComplexOrderStrategyType

attribute), 63
IS_HOT (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
IS_REGULAR_MARKET_QUOTE

(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

IS_REGULAR_MARKET_TRADE
(tda.streaming.StreamClient.LevelOneEquityFields

90 Index

tda-api

attribute), 33
IS_TRADABLE (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
ISE (tda.orders.common.Destination attribute), 62
ISLAND_ASK_DEPRECATED

(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

ISLAND_ASK_SIZE_DEPRECATED
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

ISLAND_BID_DEPRECATED
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

ISLAND_BID_SIZE_DEPRECATED
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

ISLAND_VOLUME_DEPRECATED
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

J
JANUARY (tda.client.Client.Options.ExpirationMonth

attribute), 17
JULY (tda.client.Client.Options.ExpirationMonth at-

tribute), 17
JUNE (tda.client.Client.Options.ExpirationMonth at-

tribute), 17

K
KEYWORD_ARRAY (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45

L
LAST (tda.orders.common.PriceLinkBasis attribute), 66
LAST (tda.orders.common.StopPriceLinkBasis at-

tribute), 65
LAST (tda.orders.common.StopType attribute), 66
LAST_ID (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
LAST_ID (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
LAST_ID (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
LAST_PRICE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 31
LAST_PRICE (tda.streaming.StreamClient.LevelOneForexFields

attribute), 39
LAST_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
LAST_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
LAST_PRICE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35

LAST_PRICE (tda.streaming.StreamClient.TimesaleFields
attribute), 44

LAST_SEQUENCE (tda.streaming.StreamClient.TimesaleFields
attribute), 44

LAST_SIZE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

LAST_SIZE (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

LAST_SIZE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

LAST_SIZE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

LAST_SIZE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

LAST_SIZE (tda.streaming.StreamClient.TimesaleFields
attribute), 44

level_one_equity_subs()
(tda.streaming.StreamClient method), 31

level_one_forex_subs()
(tda.streaming.StreamClient method), 39

level_one_futures_options_subs()
(tda.streaming.StreamClient method), 40

level_one_futures_subs()
(tda.streaming.StreamClient method), 36

level_one_option_subs()
(tda.streaming.StreamClient method), 34

LIMIT (tda.orders.common.OrderType attribute), 58
listed_book_subs() (tda.streaming.StreamClient

method), 43
login() (tda.streaming.StreamClient method), 26
LOW_52_WEEK (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
LOW_52_WEEK (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
LOW_PRICE (tda.streaming.StreamClient.ChartEquityFields

attribute), 30
LOW_PRICE (tda.streaming.StreamClient.ChartFuturesFields

attribute), 30
LOW_PRICE (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32
LOW_PRICE (tda.streaming.StreamClient.LevelOneForexFields

attribute), 39
LOW_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 37
LOW_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 41
LOW_PRICE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35

M
MANUAL (tda.orders.common.PriceLinkBasis attribute),

66
MANUAL (tda.orders.common.StopPriceLinkBasis at-

tribute), 65

Index 91

tda-api

MARCH (tda.client.Client.Options.ExpirationMonth at-
tribute), 17

MARGINABLE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

MARK (tda.orders.common.PriceLinkBasis attribute), 66
MARK (tda.orders.common.StopPriceLinkBasis at-

tribute), 65
MARK (tda.orders.common.StopType attribute), 66
MARK (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 34
MARK (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
MARK (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 38
MARK (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 42
MARK (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
MARKET (tda.orders.common.OrderType attribute), 58
MARKET_MAKER (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
MARKET_ON_CLOSE (tda.orders.common.OrderType

attribute), 59
Markets (class in tda.client.Client), 21
MAY (tda.client.Client.Options.ExpirationMonth at-

tribute), 17
MESSAGE_DATA (tda.streaming.StreamClient.AccountActivityFields

attribute), 46
MESSAGE_TYPE (tda.streaming.StreamClient.AccountActivityFields

attribute), 46
MINUTE (tda.client.Client.PriceHistory.FrequencyType

attribute), 19
MODERATE (tda.streaming.StreamClient.QOSLevel at-

tribute), 26
MONEY_INTRINSIC_VALUE

(tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

MONTH (tda.client.Client.PriceHistory.PeriodType
attribute), 20

MONTHLY (tda.client.Client.PriceHistory.Frequency at-
tribute), 19

MONTHLY (tda.client.Client.PriceHistory.FrequencyType
attribute), 19

Movers (class in tda.client.Client), 22
Movers.Change (class in tda.client.Client), 22
Movers.Direction (class in tda.client.Client), 22
MULTIPLIER (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35

N
NASDAQ (tda.orders.common.Destination attribute), 62
nasdaq_book_subs() (tda.streaming.StreamClient

method), 43

NAV (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

NEAR_THE_MONEY (tda.client.Client.Options.StrikeRange
attribute), 18

NET_CHANGE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

NET_CHANGE (tda.streaming.StreamClient.LevelOneForexFields
attribute), 40

NET_CHANGE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

NET_CHANGE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

NET_CHANGE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

NET_CREDIT (tda.orders.common.OrderType attribute),
59

NET_DEBIT (tda.orders.common.OrderType attribute),
59

NET_ZERO (tda.orders.common.OrderType attribute), 59
news_headline_subs()

(tda.streaming.StreamClient method), 45
NON_STANDARD (tda.client.Client.Options.Type at-

tribute), 18
NONE (tda.orders.common.ComplexOrderStrategyType

attribute), 63
NORMAL (tda.orders.common.Session attribute), 59
NOVEMBER (tda.client.Client.Options.ExpirationMonth

attribute), 17
NYSE (tda.orders.common.Destination attribute), 62

O
OCO (tda.orders.common.OrderStrategyType attribute),

64
OCTOBER (tda.client.Client.Options.ExpirationMonth

attribute), 17
one_cancels_other() (in module

tda.orders.common), 53
ONE_DAY (tda.client.Client.PriceHistory.Period at-

tribute), 19
ONE_MONTH (tda.client.Client.PriceHistory.Period at-

tribute), 19
ONE_YEAR (tda.client.Client.PriceHistory.Period

attribute), 19
OPEN_INTEREST (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 38
OPEN_INTEREST (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 42
OPEN_INTEREST (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35
OPEN_PRICE (tda.streaming.StreamClient.ChartEquityFields

attribute), 29
OPEN_PRICE (tda.streaming.StreamClient.ChartFuturesFields

attribute), 30

92 Index

tda-api

OPEN_PRICE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 33

OPEN_PRICE (tda.streaming.StreamClient.LevelOneForexFields
attribute), 40

OPEN_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

OPEN_PRICE (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

OPEN_PRICE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

OPTION (tda.client.Client.Markets attribute), 22
option_buy_to_close_limit() (in module

tda.orders.options), 52
option_buy_to_close_market() (in module

tda.orders.options), 52
option_buy_to_open_limit() (in module

tda.orders.options), 52
option_buy_to_open_market() (in module

tda.orders.options), 51
option_sell_to_close_limit() (in module

tda.orders.options), 52
option_sell_to_close_market() (in module

tda.orders.options), 52
option_sell_to_open_limit() (in module

tda.orders.options), 52
option_sell_to_open_market() (in module

tda.orders.options), 52
OptionInstruction (class in tda.orders.common),

61
Options (class in tda.client.Client), 17
Options.ContractType (class in tda.client.Client),

17
Options.ExpirationMonth (class in

tda.client.Client), 17
Options.Strategy (class in tda.client.Client), 17
Options.StrikeRange (class in tda.client.Client),

18
Options.Type (class in tda.client.Client), 18
options_book_subs() (tda.streaming.StreamClient

method), 43
OptionSymbol (class in tda.orders.options), 51
Order (class in tda.client.Client), 14
Order.Status (class in tda.client.Client), 14
ORDERS (tda.client.Client.Account.Fields attribute), 15
OrderStrategyType (class in tda.orders.common),

64
OrderType (class in tda.orders.common), 58
OTHER (tda.client.Client.Transactions.TransactionType

attribute), 21
OUT_OF_THE_MONEY (tda.client.Client.Options.StrikeRange

attribute), 18

P
PE_RATIO (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 33
PENDING_ACTIVATION

(tda.client.Client.Order.Status attribute),
14

PENDING_CANCEL (tda.client.Client.Order.Status at-
tribute), 14

PENDING_REPLACE (tda.client.Client.Order.Status at-
tribute), 14

PERCENT (tda.client.Client.Movers.Change attribute),
22

PERCENT (tda.orders.common.PriceLinkType attribute),
66

PERCENT (tda.orders.common.StopPriceLinkType at-
tribute), 65

PHLX (tda.orders.common.Destination attribute), 62
place_order() (tda.client.Client method), 13
PM (tda.orders.common.Session attribute), 59
POSITIONS (tda.client.Client.Account.Fields attribute),

15
PREFERENCES (tda.client.Client.UserPrincipals.Fields

attribute), 22
PriceHistory (class in tda.client.Client), 19
PriceHistory.Frequency (class in

tda.client.Client), 19
PriceHistory.FrequencyType (class in

tda.client.Client), 19
PriceHistory.Period (class in tda.client.Client),

19
PriceHistory.PeriodType (class in

tda.client.Client), 20
PriceLinkBasis (class in tda.orders.common), 66
PriceLinkType (class in tda.orders.common), 66
PRODUCT (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
PRODUCT (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 38
PRODUCT (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 42
PUT (tda.client.Client.Options.ContractType attribute),

17

Q
quality_of_service()

(tda.streaming.StreamClient method), 26
QUEUED (tda.client.Client.Order.Status attribute), 14
QUOTE_DAY (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32
QUOTE_DAY (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35
QUOTE_TIME (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32
QUOTE_TIME (tda.streaming.StreamClient.LevelOneForexFields

attribute), 39

Index 93

tda-api

QUOTE_TIME (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

QUOTE_TIME (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

QUOTE_TIME (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

QUOTE_TIME_IN_LONG
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

R
REAL_TIME (tda.streaming.StreamClient.QOSLevel at-

tribute), 26
REGULAR_MARKET_LAST_PRICE

(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

REGULAR_MARKET_LAST_SIZE
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

REGULAR_MARKET_NET_CHANGE
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

REGULAR_MARKET_TRADE_DAY
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

REGULAR_MARKET_TRADE_TIME
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

REGULAR_MARKET_TRADE_TIME_IN_LONG
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

REJECTED (tda.client.Client.Order.Status attribute), 14
replace_order() (tda.client.Client method), 15
replace_saved_order() (tda.client.Client

method), 21
replace_watchlist() (tda.client.Client method),

23
REPLACED (tda.client.Client.Order.Status attribute), 14
RHO (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
ROLL (tda.client.Client.Options.Strategy attribute), 18

S
SEAMLESS (tda.orders.common.Session attribute), 59
search_instruments() (tda.client.Client method),

15
SECURITY_STATUS (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 34
SECURITY_STATUS (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
SECURITY_STATUS (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 38
SECURITY_STATUS (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 42

SECURITY_STATUS (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

SELL (tda.orders.common.EquityInstruction attribute),
61

SELL_ONLY (tda.client.Client.Transactions.TransactionType
attribute), 21

SELL_SHORT (tda.orders.common.EquityInstruction at-
tribute), 61

SELL_TO_CLOSE (tda.orders.common.OptionInstruction
attribute), 61

SELL_TO_OPEN (tda.orders.common.OptionInstruction
attribute), 61

SEPTEMBER (tda.client.Client.Options.ExpirationMonth
attribute), 17

SEQUENCE (tda.streaming.StreamClient.ChartEquityFields
attribute), 30

Session (class in tda.orders.common), 59
set_account_id() (tda.utils.Utils method), 69
set_activation_price()

(tda.orders.generic.OrderBuilder method),
67

set_complex_order_strategy_type()
(tda.orders.generic.OrderBuilder method),
64

set_duration() (tda.orders.generic.OrderBuilder
method), 60

set_json_decoder() (tda.streaming.StreamClient
method), 47

set_order_strategy_type()
(tda.orders.generic.OrderBuilder method),
64

set_order_type() (tda.orders.generic.OrderBuilder
method), 59

set_price() (tda.orders.generic.OrderBuilder
method), 60

set_price_link_basis()
(tda.orders.generic.OrderBuilder method),
66

set_price_link_type()
(tda.orders.generic.OrderBuilder method),
67

set_quantity() (tda.orders.generic.OrderBuilder
method), 65

set_requested_destination()
(tda.orders.generic.OrderBuilder method),
62

set_session() (tda.orders.generic.OrderBuilder
method), 60

set_special_instruction()
(tda.orders.generic.OrderBuilder method),
62

set_stop_price() (tda.orders.generic.OrderBuilder
method), 65

set_stop_price_link_basis()

94 Index

tda-api

(tda.orders.generic.OrderBuilder method),
65

set_stop_price_link_type()
(tda.orders.generic.OrderBuilder method),
66

set_stop_price_offset()
(tda.orders.generic.OrderBuilder method),
66

set_stop_type() (tda.orders.generic.OrderBuilder
method), 66

SHORTABLE (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

SINGLE (tda.client.Client.Options.Strategy attribute), 18
SINGLE (tda.orders.common.OrderStrategyType at-

tribute), 64
SIX_MONTHS (tda.client.Client.PriceHistory.Period at-

tribute), 19
SLOW (tda.streaming.StreamClient.QOSLevel attribute),

27
SpecialInstruction (class in tda.orders.common),

62
STANDARD (tda.client.Client.Options.Type attribute), 18
STANDARD (tda.orders.common.StopType attribute), 66
STATUS (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
STOP (tda.orders.common.OrderType attribute), 58
STOP_LIMIT (tda.orders.common.OrderType attribute),

58
StopPriceLinkBasis (class in tda.orders.common),

65
StopPriceLinkType (class in tda.orders.common),

65
StopType (class in tda.orders.common), 66
STORY_DATETIME (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
STORY_ID (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
STORY_SOURCE (tda.streaming.StreamClient.NewsHeadlineFields

attribute), 45
STRADDLE (tda.client.Client.Options.Strategy attribute),

18
STRADDLE (tda.orders.common.ComplexOrderStrategyType

attribute), 63
STRANGLE (tda.client.Client.Options.Strategy attribute),

18
STRANGLE (tda.orders.common.ComplexOrderStrategyType

attribute), 63
StreamClient.AccountActivityFields (class

in tda.streaming), 46
StreamClient.ChartEquityFields (class in

tda.streaming), 29
StreamClient.ChartFuturesFields (class in

tda.streaming), 30
StreamClient.LevelOneEquityFields (class

in tda.streaming), 31
StreamClient.LevelOneForexFields (class in

tda.streaming), 39
StreamClient.LevelOneFuturesFields (class

in tda.streaming), 37
StreamClient.LevelOneFuturesOptionsFields

(class in tda.streaming), 40
StreamClient.LevelOneOptionFields (class

in tda.streaming), 34
StreamClient.NewsHeadlineFields (class in

tda.streaming), 45
StreamClient.QOSLevel (class in tda.streaming),

26
StreamClient.TimesaleFields (class in

tda.streaming), 43
STREAMER_CONNECTION_INFO

(tda.client.Client.UserPrincipals.Fields at-
tribute), 22

STREAMER_SUBSCRIPTION_KEYS
(tda.client.Client.UserPrincipals.Fields at-
tribute), 22

StreamJsonDecoder (class in tda.streaming), 47
STRIKE_PRICE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
STRIKES_ABOVE_MARKET

(tda.client.Client.Options.StrikeRange at-
tribute), 18

STRIKES_BELOW_MARKET
(tda.client.Client.Options.StrikeRange at-
tribute), 18

STRIKES_NEAR_MARKET
(tda.client.Client.Options.StrikeRange at-
tribute), 18

SUBSCRIPTION_KEY (tda.streaming.StreamClient.AccountActivityFields
attribute), 46

SURROGATE_IDS (tda.client.Client.UserPrincipals.Fields
attribute), 22

SYMBOL (tda.streaming.StreamClient.ChartEquityFields
attribute), 29

SYMBOL (tda.streaming.StreamClient.ChartFuturesFields
attribute), 30

SYMBOL (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 31

SYMBOL (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

SYMBOL (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

SYMBOL (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

SYMBOL (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 34

SYMBOL (tda.streaming.StreamClient.NewsHeadlineFields
attribute), 45

SYMBOL (tda.streaming.StreamClient.TimesaleFields at-

Index 95

tda-api

tribute), 44
SYMBOL_REGEX (tda.client.Client.Instrument.Projection

attribute), 16
SYMBOL_SEARCH (tda.client.Client.Instrument.Projection

attribute), 16

T
tda.auth (module), 4
tda.client (module), 9
tda.debug (module), 72
tda.orders (module), 48
tda.orders.generic (module), 54
tda.streaming (module), 23
TEN_DAYS (tda.client.Client.PriceHistory.Period

attribute), 19
TEN_YEARS (tda.client.Client.PriceHistory.Period at-

tribute), 19
THEORETICAL_OPTION_VALUE

(tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

THETA (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

THREE_DAYS (tda.client.Client.PriceHistory.Period at-
tribute), 19

THREE_MONTHS (tda.client.Client.PriceHistory.Period
attribute), 19

THREE_YEARS (tda.client.Client.PriceHistory.Period
attribute), 19

TICK (tda.orders.common.PriceLinkType attribute), 66
TICK (tda.orders.common.StopPriceLinkType attribute),

66
TICK (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
TICK (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 38
TICK (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 42
TICK_AMOUNT (tda.streaming.StreamClient.LevelOneForexFields

attribute), 40
TICK_AMOUNT (tda.streaming.StreamClient.LevelOneFuturesFields

attribute), 38
TICK_AMOUNT (tda.streaming.StreamClient.LevelOneFuturesOptionsFields

attribute), 42
TIME_VALUE (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
timesale_equity_subs()

(tda.streaming.StreamClient method), 44
timesale_futures_subs()

(tda.streaming.StreamClient method), 44
timesale_options_subs()

(tda.streaming.StreamClient method), 44
TOTAL_VOLUME (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32

TOTAL_VOLUME (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

TOTAL_VOLUME (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

TOTAL_VOLUME (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

TOTAL_VOLUME (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

TRADE (tda.client.Client.Transactions.TransactionType
attribute), 21

TRADE_DAY (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

TRADE_DAY (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

TRADE_TIME (tda.streaming.StreamClient.LevelOneEquityFields
attribute), 32

TRADE_TIME (tda.streaming.StreamClient.LevelOneForexFields
attribute), 39

TRADE_TIME (tda.streaming.StreamClient.LevelOneFuturesFields
attribute), 37

TRADE_TIME (tda.streaming.StreamClient.LevelOneFuturesOptionsFields
attribute), 41

TRADE_TIME (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 35

TRADE_TIME (tda.streaming.StreamClient.TimesaleFields
attribute), 44

TRADE_TIME_IN_LONG
(tda.streaming.StreamClient.LevelOneEquityFields
attribute), 34

TRADING_HOURS (tda.streaming.StreamClient.LevelOneForexFields
attribute), 40

TRAILING_STOP (tda.orders.common.OrderType at-
tribute), 59

TRAILING_STOP_LIMIT
(tda.orders.common.OrderType attribute),
59

Transactions (class in tda.client.Client), 20
Transactions.TransactionType (class in

tda.client.Client), 20
TRIGGER (tda.orders.common.OrderStrategyType

attribute), 64
TRIGGER (tda.orders.common.PriceLinkBasis at-

tribute), 66
TRIGGER (tda.orders.common.StopPriceLinkBasis at-

tribute), 65
TWENTY_YEARS (tda.client.Client.PriceHistory.Period

attribute), 19
TWO_DAYS (tda.client.Client.PriceHistory.Period

attribute), 19
TWO_MONTHS (tda.client.Client.PriceHistory.Period at-

tribute), 19
TWO_YEARS (tda.client.Client.PriceHistory.Period at-

tribute), 19

96 Index

tda-api

U
UNBALANCED_BUTTERFLY

(tda.orders.common.ComplexOrderStrategyType
attribute), 63

UNBALANCED_CONDOR
(tda.orders.common.ComplexOrderStrategyType
attribute), 64

UNBALANCED_IRON_CONDOR
(tda.orders.common.ComplexOrderStrategyType
attribute), 64

UNBALANCED_VERTICAL_ROLL
(tda.orders.common.ComplexOrderStrategyType
attribute), 64

UNDERLYING (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

UNDERLYING_PRICE (tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

UP (tda.client.Client.Movers.Direction attribute), 22
update_preferences() (tda.client.Client method),

22
update_watchlist() (tda.client.Client method), 23
UserPrincipals (class in tda.client.Client), 22
UserPrincipals.Fields (class in

tda.client.Client), 22
Utils (class in tda.utils), 69
UV_EXPIRATION_TYPE

(tda.streaming.StreamClient.LevelOneOptionFields
attribute), 36

V
VALUE (tda.client.Client.Movers.Change attribute), 22
VALUE (tda.orders.common.PriceLinkType attribute), 66
VALUE (tda.orders.common.StopPriceLinkType at-

tribute), 65
VEGA (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 36
VERTICAL (tda.client.Client.Options.Strategy attribute),

18
VERTICAL (tda.orders.common.ComplexOrderStrategyType

attribute), 63
VERTICAL_ROLL (tda.orders.common.ComplexOrderStrategyType

attribute), 63
VOLATILITY (tda.streaming.StreamClient.LevelOneEquityFields

attribute), 32
VOLATILITY (tda.streaming.StreamClient.LevelOneOptionFields

attribute), 35
VOLUME (tda.streaming.StreamClient.ChartEquityFields

attribute), 30
VOLUME (tda.streaming.StreamClient.ChartFuturesFields

attribute), 31

W
WEEKLY (tda.client.Client.PriceHistory.Frequency at-

tribute), 19

WEEKLY (tda.client.Client.PriceHistory.FrequencyType
attribute), 19

WORKING (tda.client.Client.Order.Status attribute), 14

Y
YEAR (tda.client.Client.PriceHistory.PeriodType at-

tribute), 20
YEAR_TO_DATE (tda.client.Client.PriceHistory.Period

attribute), 20
YEAR_TO_DATE (tda.client.Client.PriceHistory.PeriodType

attribute), 20

Index 97

	Getting Started
	TD Ameritrade API Access
	Installing tda-api
	Getting Help

	Authentication and Client Creation
	OAuth Refresher
	Fetching a Token and Creating a Client
	Advanced Functionality
	Troubleshooting

	HTTP Client
	Asyncio Support
	Calling Conventions
	Return Values
	Creating a New Client
	Orders
	Account Info
	Instrument Info
	Option Chain
	Price History
	Current Quotes
	Other Endpoints

	Streaming Client
	Use Overview
	Enabling Real-Time Data Access
	OHLCV Charts
	Level One Quotes
	Level Two Order Book
	Time of Sale
	News Headlines
	Account Activity
	Troubleshooting

	Order Templates
	Using These Templates
	Equity Templates
	Options Templates
	Utility Methods
	What happened to EquityOrderBuilder?

	OrderBuilder Reference
	Optional: Order Specification Introduction
	Constructing OrderBuilder Objects from Historical Orders
	OrderBuilder Reference

	Utilities
	Get the Most Recent Order

	Example Application
	Getting Help
	Asking for Help on Discord
	Reporting a Bug

	Community-Contributed Functionality
	Custom JSON Decoding

	Contributing to tda-api
	Setting up the Dev Environment
	Development Guidelines

	Indices and tables
	Python Module Index
	Index

