

tda-api: An Unofficial TD Ameritrade Client

[image: _images/github-logo.png]
 [https://github.com/alexgolec/tda-api][image: _images/patreon.png]
 [https://www.patreon.com/alexgolec][image: _images/discord-logo.png]
 [https://discord.gg/M3vjtHj]
Contents:

	Getting Started
	TD Ameritrade API Access

	Installing tda-api

	Getting Help

	Authentication and Client Creation
	OAuth Refresher

	Fetching a Token and Creating a Client

	Advanced Functionality

	Troubleshooting

	HTTP Client
	Asyncio Support

	Calling Conventions

	Return Values

	Creating a New Client

	Orders

	Account Info

	Instrument Info

	Option Chain

	Price History

	Current Quotes

	Other Endpoints

	Streaming Client
	Use Overview

	Enabling Real-Time Data Access

	OHLCV Charts

	Level One Quotes

	Level Two Order Book

	Time of Sale

	News Headlines

	Account Activity

	Troubleshooting

	Order Templates
	Using These Templates

	Equity Templates

	Options Templates

	Utility Methods

	What happened to EquityOrderBuilder?

	OrderBuilder Reference
	Optional: Order Specification Introduction

	Constructing OrderBuilder Objects from Historical Orders

	OrderBuilder Reference

	Utilities
	Get the Most Recent Order

	Example Application

	Getting Help
	Asking for Help on Discord

	Reporting a Bug

	Community-Contributed Functionality
	Custom JSON Decoding

	Contributing to tda-api
	Setting up the Dev Environment

	Development Guidelines

Indices and tables

	Index

	Module Index

	Search Page

Disclaimer: tda-api is an unofficial API wrapper. It is in no way
endorsed by or affiliated with TD Ameritrade or any associated organization.
Make sure to read and understand the terms of service of the underlying API
before using this package. This authors accept no responsibility for any
damage that might stem from use of this package. See the LICENSE file for
more details.

Getting Started

Welcome to tda-api! Read this page to learn how to install and configure
your first TD Ameritrade Python application.

TD Ameritrade API Access

All API calls to the TD Ameritrade API require an API key. Before we do
anything with tda-api, you’ll need to create a developer account with TD
Ameritrade and register an application. By the end of this section, you’ll have
accomplished the three prerequisites for using tda-api:

	Create an application.

	Choose and save the callback URL (important for authenticating).

	Receive an API key.

You can create a developer account here [https://developer.tdameritrade.com/user/register]. The instructions from here on out assume you’re logged in,
so make sure you log into the developer site after you’ve created your account.

Next, you’ll want to create an application [https://developer.tdameritrade.com/user/me/apps/add]. The app name and
purpose aren’t particularly important right now, but the callback URL is. In a
nutshell, the OAuth login flow [https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#web-application-flow] that TD Ameritrade uses
works by opening a TD Ameritrade login page, securely collecting credentials on
their domain, and then sending an HTTP request to the callback URL with the
token in the URL query.

How you use to choose your callback URL depends on whether and how you
plan on distributing your app. If you’re writing an app for your own personal
use, and plan to run entirely on your own machine, use https://localhost. If
you plan on running on a server and having users send requests to you, use a URL
you own, such as a dedicated endpoint on your domain.

Once your app is created and approved, you will receive your API key, also known
as the Client ID. This will be visible in TDA’s app listing page [https://developer.tdameritrade.com/user/me/apps]. Record this key, since it
is necessary to access most API endpoints.

Installing tda-api

This section outlines the installation process for client users. For developers,
check out Contributing to tda-api.

The recommended method of installing tda-api is using pip from
PyPi [https://pypi.org/project/tda-api/] in a virtualenv [https://virtualenv.pypa.io/en/latest/]. First create a virtualenv in your project
directory. Here we assume your virtualenv is called my-venv:

pip install virtualenv
virtualenv -v my-venv
source my-venv/bin/activate

You are now ready to install tda-api:

pip install tda-api

That’s it! You’re done! You can verify the install succeeded by importing the
package:

import tda

If this succeeded, you’re ready to move on to Authentication and Client Creation.

Note that if you are using a virtual environment and switch to a new terminal
your virtual environment will not be active in the new terminal,
and you need to run the activate command again.
If you want to disable the loaded virtual environment in the same terminal window,
use the command:

deactivate

Getting Help

If you are ever stuck, feel free to join our Discord server [https://discord.gg/M3vjtHj] to ask questions, get advice, and chat with
like-minded people. If you feel you’ve found a bug, you can fill out a bug
report.

Authentication and Client Creation

By now, you should have followed the instructions in Getting Started and
are ready to start making API calls. Read this page to learn how to get over the
last remaining hurdle: OAuth authentication.

Before we begin, however, note that this guide is meant to users who want to run
applications on their own machines, without distributing them to others. If you
plan on distributing your app, or if you plan on running it on a server and
allowing access to other users, this login flow is not for you.

OAuth Refresher

This section is purely for the curious. If you already understand OAuth (wow,
congrats) or if you don’t care and just want to use this package as fast as
possible, feel free to skip this section. If you encounter any weird behavior,
this section may help you understand what’s going on.

Webapp authentication is a complex beast. The OAuth protocol was created to
allow applications to access one anothers’ APIs securely and with the minimum
level of trust possible. A full treatise on this topic is well beyond the scope
of this guide, but in order to alleviate
some [https://www.reddit.com/r/algotrading/comments/brohdx/td_ameritrade_api_auth_error/]
of [https://www.reddit.com/r/algotrading/comments/alk7yh/tdameritrade_api_works/]
the [https://www.reddit.com/r/algotrading/comments/914q22/successful_access_to_td_ameritrade_api/]
confusion [https://www.reddit.com/r/algotrading/comments/c81vzq/td_ameritrade_api_access_2019_guide/]
and [https://www.reddit.com/r/algotrading/comments/a588l1/td_ameritrade_restful_api_beginner_questions/]
complexity [https://www.reddit.com/r/algotrading/comments/brsnsm/how_to_automate_td_ameritrade_api_auth_code_for/]
that seems to surround this part of the API, let’s give a quick explanation of
how OAuth works in the context of TD Ameritrade’s API.

The first thing to understand is that the OAuth webapp flow was created to allow
client-side applications consisting of a webapp frontend and a remotely hosted
backend to interact with a third party API. Unlike the backend application flow [https://requests-oauthlib.readthedocs.io/en/latest/oauth2_workflow.html#backend-application-flow], in which the remotely hosted backend has a secret
which allows it to access the API on its own behalf, the webapp flow allows
either the webapp frontend or the remotely host backend to access the API on
behalf of its users.

If you’ve ever installed a GitHub, Facebook, Twitter, GMail, etc. app, you’ve
seen this flow. You click on the “install” link, a login window pops up, you
enter your password, and you’re presented with a page that asks whether you want
to grant the app access to your account.

Here’s what’s happening under the hood. The window that pops up is the
authentication URL [https://developer.tdameritrade.com/content/simple-auth-local-apps], which opens a login page for the target API. The
aim is to allow the user to input their username and password without the webapp
frontend or the remotely hosted backend seeing it. On web browsers, this is
accomplished using the browser’s refusal to send credentials from one domain to
another.

Once login here is successful, the API replies with a redirect to a URL that the
remotely hosted backend controls. This is the callback URL. This redirect will
contain a code which securely identifies the user to the API, embedded in the
query of the request.

You might think that code is enough to access the API, and it would be if the
API author were willing to sacrifice long-term security. The exact reasons why
it doesn’t work involve some deep security topics like robustness against replay
attacks and session duration limitation, but we’ll skip them here.

This code is useful only for fetching a token from the authentication endpoint [https://developer.tdameritrade.com/authentication/apis/post/token-0]. This
token is what we want: a secure secret which the client can use to access API
endpoints, and can be refreshed over time.

If you’ve gotten this far and your head isn’t spinning, you haven’t been paying
attention. Security-sensitive protocols can be very complicated, and you should
never build your own implementation. Fortunately there exist very robust
implementations of this flow, and tda-api’s authentication module makes
using them easy.

Fetching a Token and Creating a Client

tda-api provides an easy implementation of the client-side login flow in the
auth package. It uses a selenium [https://selenium-python.readthedocs.io/] webdriver to open the TD Ameritrade
authentication URL, take your login credentials, catch the post-login redirect,
and fetch a reusable token. It returns a fully-configured HTTP Client, ready
to send API calls. It also handles token refreshing, and writes updated tokens
to the token file.

These functions are webdriver-agnostic, meaning you can use whatever
webdriver-supported browser you have available on your system. You can find
information about available webdriver on the Selenium documentation [https://www.selenium.dev/documentation/en/getting_started_with_webdriver/browsers/].

	
tda.auth.client_from_login_flow(webdriver, api_key, redirect_url, token_path, redirect_wait_time_seconds=0.1, max_waits=3000, asyncio=False, token_write_func=None)

	Uses the webdriver to perform an OAuth webapp login flow and creates a
client wrapped around the resulting token. The client will be configured to
refresh the token as necessary, writing each updated version to
token_path.

	Parameters

	
	webdriver – selenium [https://selenium-python.readthedocs.io]
webdriver which will be used to perform the login flow.

	api_key – Your TD Ameritrade application’s API key, also known as the
client ID.

	redirect_url – Your TD Ameritrade application’s redirect URL. Note
this must exactly match the value you’ve entered in
your application configuration, otherwise login will
fail with a security error.

	token_path – Path to which the new token will be written. If the token
file already exists, it will be overwritten with a new
one. Updated tokens will be written to this path as well.

If for some reason you cannot open a web browser, such as when running in a
cloud environment, the following function will guide you through the process of
manually creating a token by copy-pasting relevant URLs.

	
tda.auth.client_from_manual_flow(api_key, redirect_url, token_path, asyncio=False, token_write_func=None)

	Walks the user through performing an OAuth login flow by manually
copy-pasting URLs, and returns a client wrapped around the resulting token.
The client will be configured to refresh the token as necessary, writing
each updated version to token_path.

Note this method is more complicated and error prone, and should be avoided
in favor of client_from_login_flow() wherever possible.

	Parameters

	
	api_key – Your TD Ameritrade application’s API key, also known as the
client ID.

	redirect_url – Your TD Ameritrade application’s redirect URL. Note
this must exactly match the value you’ve entered in
your application configuration, otherwise login will
fail with a security error.

	token_path – Path to which the new token will be written. If the token
file already exists, it will be overwritten with a new
one. Updated tokens will be written to this path as well.

Once you have a token written on disk, you can reuse it without going through
the login flow again.

	
tda.auth.client_from_token_file(token_path, api_key, asyncio=False)

	Returns a session from an existing token file. The session will perform
an auth refresh as needed. It will also update the token on disk whenever
appropriate.

	Parameters

	
	token_path – Path to an existing token. Updated tokens will be written
to this path. If you do not yet have a token, use
client_from_login_flow() or
easy_client() to create one.

	api_key – Your TD Ameritrade application’s API key, also known as the
client ID.

The following is a convenient wrapper around these two methods, calling each
when appropriate:

	
tda.auth.easy_client(api_key, redirect_uri, token_path, webdriver_func=None, asyncio=False)

	Convenient wrapper around client_from_login_flow() and
client_from_token_file(). If token_path exists, loads the token
from it. Otherwise open a login flow to fetch a new token. Returns a client
configured to refresh the token to token_path.

Reminder: You should never create the token file yourself or modify it in
any way. If token_path refers to an existing file, this method will
assume that file is valid token and will attempt to parse it.

	Parameters

	
	api_key – Your TD Ameritrade application’s API key, also known as the
client ID.

	redirect_url – Your TD Ameritrade application’s redirect URL. Note
this must exactly match the value you’ve entered in
your application configuration, otherwise login will
fail with a security error.

	token_path – Path that new token will be read from and written to. If
If this file exists, this method will assume it’s valid
and will attempt to parse it as a token. If it does not,
this method will create a new one using
client_from_login_flow(). Updated tokens
will be written to this path as well.

	webdriver_func – Function that returns a webdriver for use in fetching
a new token. Will only be called if the token file
cannot be found.

Advanced Functionality

The default token fetcher functions are designed for ease of use. They make some
common assumptions, most notably a writable filesystem, which are valid for 99%
of users. However, some very specialized users, for instance those hoping to
deploy tda-api in serverless settings, require some more advanced
functionality. This method provides the most flexible facility for fetching
tokens possible.

Important: This is an extremely advanced method. If you read the
documentation and think anything other than “oh wow, this is exactly what I’ve
been looking for,” you don’t need this function. Please use the other helpers
instead.

	
tda.auth.client_from_access_functions(api_key, token_read_func, token_write_func, asyncio=False)

	Returns a session from an existing token file, using the accessor methods to
read and write the token. This is an advanced method for users who do not
have access to a standard writable filesystem, such as users of AWS Lambda
and other serverless products who must persist token updates on
non-filesystem places, such as S3. 99.9% of users should not use this
function.

Users are free to customize how they represent the token file. In theory,
since they have direct access to the token, they can get creative about how
they store it and fetch it. In practice, it is highly recommended to
simply accept the token object and use pickle to serialize and
deserialize it, without inspecting it in any way.

	Parameters

	
	api_key – Your TD Ameritrade application’s API key, also known as the
client ID.

	token_read_func – Function that takes no arguments and returns a token
object.

	token_write_func – Function that a token object and writes it. Will be
called whenever the token is updated, such as when
it is refreshed.

Troubleshooting

As simple as it seems, this process is complex and mistakes are easy to make.
This section outlines some of the more common issues you might encounter. If you
find yourself dealing with something that isn’t listed here, or if you try the
suggested remedies and are still seeing issues, see the Getting Help page. You
can also join our Discord server [https://discord.gg/M3vjtHj] to ask questions.

“A third-party application may be attempting to make unauthorized access to your account”

One attack on improperly implemented OAuth login flows involves tricking a user
into submitting their credentials for a real app and then redirecting to a
malicious web server (remember the GET request to the redirect URI contains
all credentials required to access the user’s account). This is especially
pernicious because from the user’s perspective, they see a real login window and
probably never realize they’ve been sent to a malicious server, especially if
the landing page is designed to resemble the target API’s landing page.

TD Ameritrade correctly prevents this attack by refusing to allow a login if the
redirect URI does not exactly match the client ID/API key and redirect URI
with which the app is configured. If you make any mistake in setting your API
key or redirect URI, you’ll see this instead of a login page:

[image: A third-party application may be attempting to make unauthorized access to your account]
If this happens, you almost certainly copied your API key or redirect URI
incorrectly. Go back to your application list [https://developer.tdameritrade.com/user/me/apps] and copy-paste the
information again. Don’t manually type it out, don’t visually spot-check it.
Copy-paste it. Make sure to include details like trailing slashes, https
protol specifications, and port numbers.

Note tda-api does not require you to suffix your client ID with
@AMER.OAUTHAP. It will accept it if you do so, but if you make even the
slightest mistake without noticing, you will end up seeing this error and will
be very confused. We recommend simply passing the “Client ID” field in as the
API key parameter without any embellishment, and letting the library handle the
rest.

tda-api Hangs After Successful Login

After opening the login window, tda-api loops and waits until the
webdriver’s current URL starts with the given redirect URI:

callback_url = ''
while not callback_url.startswith(redirect_url):
 callback_url = webdriver.current_url
 time.sleep(redirect_wait_time_seconds)

Usually, it would be impossible for a successful post-login callback to not
start with the callback URI, but there’s one major exception: when the callback
URI starts with http. Behavior varies by browser and app configuration, but
a callback URI starting with http can sometimes be redirected to one
starting with https, in which case tda-api will never notice the
redirect.

If this is happening to you, consider changing your callback URI to use
https instead of http. Not only will it make your life easier here, but
it is extremely bad practice to send credentials like this over an unencrypted
channel like that provided by http.

Token Parsing Failures

tda-api handles creating and refreshing tokens. Simply put, the user should
never create or modify the token file. If you are experiencing parse errors
when accessing the token file or getting exceptions when accessing it, it’s
probably because you created it yourself or modified it. If you’re experiencing
token parsing issues, remember that:

	You should never create the token file yourself. If you don’t already have a
token, you should pass a nonexistent file path to
client_from_login_flow() or easy_client().
If the file already exists, these methods assume it’s a valid token file. If
the file does not exist, they will go through the login flow to create one.

	You should never modify the token file. The token file is automatically
managed by tda-api, and modifying it will almost certainly break it.

	You should never share the token file. If the token file is shared between
applications, one of them will beat the other to refreshing, locking the
slower one out of using tda-api.

If you didn’t do any of this and are still seeing issues using a token file that
you’re confident is valid, please file a ticket [https://github.com/alexgolec/tda-api/issues]. Just remember, never share
your token file, not even with tda-api developers. Sharing the token
file is as dangerous as sharing your TD Ameritrade username and password.

What If I Can’t Use a Browser?

Launching a browser can be inconvenient in some situations, most notably in
containerized applications running on a cloud provider. tda-api supports two
alternatives to creating tokens by opening a web browser.

Firstly, the manual login flow flow allows you to go
through the login flow on a different machine than the one on which tda-api
is running. Instead of starting the web browser and automatically opening the
relevant URLs, this flow allows you to manually copy-paste around the URLs. It’s
a little more cumbersome, but it has no dependency on selenium.

Alterately, you can take advantage of the fact that token files are portable.
Once you create a token on one machine, such as one where you can open a web
browser, you can easily copy that token file to another machine, such as your
application in the cloud. However, make sure you don’t use the same token on
two machines. It is recommended to delete the token created on the
browser-capable machine as soon as it is copied to its destination.

HTTP Client

A naive, unopinionated wrapper around the
TD Ameritrade HTTP API [https://developer.tdameritrade.com/apis]. This
client provides access to all endpoints of the API in as easy and direct a way
as possible. For example, here is how you can fetch the past 20 years of data
for Apple stock:

Do not attempt to use more than one Client object per token file, as
this will likely cause issues with the underlying OAuth2 session management

from tda.auth import easy_client
from tda.client import Client

c = easy_client(
 api_key='APIKEY',
 redirect_uri='https://localhost',
 token_path='/tmp/token.pickle')

resp = c.get_price_history('AAPL',
 period_type=Client.PriceHistory.PeriodType.YEAR,
 period=Client.PriceHistory.Period.TWENTY_YEARS,
 frequency_type=Client.PriceHistory.FrequencyType.DAILY,
 frequency=Client.PriceHistory.Frequency.DAILY)
assert resp.status_code == httpx.codes.OK
history = resp.json()

Note we we create a new client using the auth package as described in
Authentication and Client Creation. Creating a client directly is possible, but not recommended.

Asyncio Support

An asynchronous variant is available through a keyword to the client
constructor. This allows for higher-performance API usage, at the cost
of slightly increased application complexity.

from tda.auth import easy_client
from tda.client import Client

async def main():
 c = easy_client(
 api_key='APIKEY',
 redirect_uri='https://localhost',
 token_path='/tmp/token.pickle',
 asyncio=True)

 resp = await c.get_price_history('AAPL',
 period_type=Client.PriceHistory.PeriodType.YEAR,
 period=Client.PriceHistory.Period.TWENTY_YEARS,
 frequency_type=Client.PriceHistory.FrequencyType.DAILY,
 frequency=Client.PriceHistory.Frequency.DAILY)
 assert resp.status_code == httpx.codes.OK
 history = resp.json()

if __name__ == '__main__':
 import asyncio
 asyncio.run_until_complete(main())

For more examples, please see the examples/async directory in
GitHub.

Calling Conventions

Function parameters are categorized as either required or optional.
Required parameters, such as 'AAPL' in the example above, are passed as
positional arguments. Optional parameters, like period_type and the rest,
are passed as keyword arguments.

Parameters which have special values recognized by the API are
represented by Python enums [https://docs.python.org/3/library/enum.html].
This is because the API rejects requests which pass unrecognized values, and
this enum wrapping is provided as a convenient mechanism to avoid consternation
caused by accidentally passing an unrecognized value.

By default, passing values other than the required enums will raise a
ValueError. If you believe the API accepts a value that isn’t supported
here, you can use set_enforce_enums to disable this behavior at your own
risk. If you do find a supported value that isn’t listed here, please open an
issue describing it or submit a PR adding the new functionality.

Return Values

All methods return a response object generated under the hood by the
HTTPX [https://www.python-httpx.org/quickstart/#response-content] module.
For a full listing of what’s possible, read that module’s documentation. Most if
not all users can simply use the following pattern:

r = client.some_endpoint()
assert r.status_code == httpx.codes.OK, r.raise_for_status()
data = r.json()

The API indicates errors using the response status code, and this pattern will
raise the appropriate exception if the response is not a success. The data can
be fetched by calling the .json() method.

This data will be pure python data structures which can be directly accessed.
You can also use your favorite data analysis library’s dataframe format using
the appropriate library. For instance you can create a pandas [https://pandas.pydata.org/] dataframe using its conversion method [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_dict.html].

Note: Because the author has no relationship whatsoever with TD Ameritrade,
this document makes no effort to describe the structure of the returned JSON
objects. TDA might change them at any time, at which point this document will
become silently out of date. Instead, each of the methods described below
contains a link to the official documentation. For endpoints that return
meaningful JSON objects, it includes a JSON schema which describes the return
value. Please use that documentation or your own experimentation when figuring
out how to use the data returned by this API.

Creating a New Client

99.9% of users should not create their own clients, and should instead follow
the instructions outlined in Authentication and Client Creation. For those brave enough to build their
own, the constructor looks like this:

	
Client.__init__(api_key, session, *, enforce_enums=True, token_metadata=None)

	Create a new client with the given API key and session. Set
enforce_enums=False to disable strict input type checking.

Orders

Placing New Orders

Placing new orders can be a complicated task. The Client.place_order() method is
used to create all orders, from equities to options. The precise order type is
defined by a complex order spec. TDA provides some example order specs [https://developer.tdameritrade.com/content/place-order-samples] to
illustrate the process and provides a schema in the place order documentation [https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0], but beyond that we’re on our own.

tda-api includes some helpers, described in Order Templates, which
provide an incomplete utility for creating various order types. While it only
scratches the surface of what’s possible, we encourage you to use that module
instead of creating your own order specs.

	
Client.place_order(account_id, order_spec)

	Place an order for a specific account. If order creation was
successful, the response will contain the ID of the generated order. See
tda.utils.Utils.extract_order_id() for more details. Note unlike
most methods in this library, responses for successful calls to this
method typically do not contain json() data, and attempting to
extract it will likely result in an exception.

Official documentation [https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0].

Accessing Existing Orders

	
Client.get_orders_by_path(account_id, *, max_results=None, from_entered_datetime=None, to_entered_datetime=None, status=None, statuses=None)

	Orders for a specific account. At most one of status and
statuses may be set. Official documentation [https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/orders-0].

	Parameters

	
	max_results – The maximum number of orders to retrieve.

	from_entered_datetime – Specifies that no orders entered before
this time should be returned. Date must
be within 60 days from today’s date.
toEnteredTime must also be set.

	to_entered_datetime – Specifies that no orders entered after this
time should be returned. fromEnteredTime
must also be set.

	status – Restrict query to orders with this status. See
Order.Status for options.

	statuses – Restrict query to orders with any of these statuses.
See Order.Status for options.

	
Client.get_orders_by_query(*, max_results=None, from_entered_datetime=None, to_entered_datetime=None, status=None, statuses=None)

	Orders for all linked accounts. At most one of status and
statuses may be set.
Official documentation [https://developer.tdameritrade.com/account-access/apis/get/orders-0].

	Parameters

	
	max_results – The maximum number of orders to retrieve.

	from_entered_datetime – Specifies that no orders entered before
this time should be returned. Date must
be within 60 days from today’s date.
toEnteredTime must also be set.

	to_entered_datetime – Specifies that no orders entered after this
time should be returned. fromEnteredTime
must also be set.

	status – Restrict query to orders with this status. See
Order.Status for options.

	statuses – Restrict query to orders with any of these statuses.
See Order.Status for options.

	
Client.get_order(order_id, account_id)

	Get a specific order for a specific account by its order ID.
Official documentation [https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0].

	
class tda.client.Client.Order

	
	
class Status

	Order statuses passed to get_orders_by_path() and
get_orders_by_query()

	
ACCEPTED = 'ACCEPTED'

	

	
AWAITING_CONDITION = 'AWAITING_CONDITION'

	

	
AWAITING_MANUAL_REVIEW = 'AWAITING_MANUAL_REVIEW'

	

	
AWAITING_PARENT_ORDER = 'AWAITING_PARENT_ORDER'

	

	
AWAITING_UR_OUR = 'AWAITING_UR_OUR'

	

	
CANCELED = 'CANCELED'

	

	
EXPIRED = 'EXPIRED'

	

	
FILLED = 'FILLED'

	

	
PENDING_ACTIVATION = 'PENDING_ACTIVATION'

	

	
PENDING_CANCEL = 'PENDING_CANCEL'

	

	
PENDING_REPLACE = 'PENDING_REPLACE'

	

	
QUEUED = 'QUEUED'

	

	
REJECTED = 'REJECTED'

	

	
REPLACED = 'REPLACED'

	

	
WORKING = 'WORKING'

	

Editing Existing Orders

Endpoints for canceling and replacing existing orders.
Annoyingly, while these endpoints require an order ID, it seems that when
placing new orders the API does not return any metadata about the new order. As
a result, if you want to cancel or replace an order after you’ve created it, you
must search for it using the methods described in Accessing Existing Orders.

	
Client.cancel_order(order_id, account_id)

	Cancel a specific order for a specific account.
Official documentation [https://developer.tdameritrade.com/account-access/apis/delete/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0].

	
Client.replace_order(account_id, order_id, order_spec)

	Replace an existing order for an account. The existing order will be
replaced by the new order. Once replaced, the old order will be canceled
and a new order will be created.
Official documentation [https://developer.tdameritrade.com/account-access/apis/put/accounts/%7BaccountId%7D/orders/%7BorderId%7D-0].

Account Info

These methods provide access to useful information about accounts. An incomplete
list of the most interesting bits:

	Account balances, including available trading balance

	Positions

	Order history

See the official documentation for each method for a complete response schema.

	
Client.get_account(account_id, *, fields=None)

	Account balances, positions, and orders for a specific account.
Official documentation [https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D-0].

	Parameters

	fields – Balances displayed by default, additional fields can be
added here by adding values from Account.Fields.

	
Client.get_accounts(*, fields=None)

	Account balances, positions, and orders for all linked accounts.
Official documentation [https://developer.tdameritrade.com/account-access/apis/get/accounts-0].

	Parameters

	fields – Balances displayed by default, additional fields can be
added here by adding values from Account.Fields.

	
class tda.client.Client.Account

	
	
class Fields

	Account fields passed to get_account() and
get_accounts()

	
ORDERS = 'orders'

	

	
POSITIONS = 'positions'

	

Instrument Info

Note: symbol fundamentals (P/E ratios, number of shares outstanding, dividend
yield, etc.) is available using the Instrument.Projection.FUNDAMENTAL
projection.

	
Client.search_instruments(symbols, projection)

	Search or retrieve instrument data, including fundamental data.
Official documentation [https://developer.tdameritrade.com/instruments/apis/get/instruments].

	Parameters

	projection – Query type. See Instrument.Projection for
options.

	
Client.get_instrument(cusip)

	Get an instrument by CUSIP.
Official documentation [https://developer.tdameritrade.com/instruments/apis/get/instruments/%7Bcusip%7D].

	
class tda.client.Client.Instrument

	
	
class Projection

	Search query type for search_instruments(). See the
official documentation [https://developer.tdameritrade.com/instruments/apis/get/instruments] for details on the semantics of each.

	
DESC_REGEX = 'desc-regex'

	

	
DESC_SEARCH = 'desc-search'

	

	
FUNDAMENTAL = 'fundamental'

	

	
SYMBOL_REGEX = 'symbol-regex'

	

	
SYMBOL_SEARCH = 'symbol-search'

	

Option Chain

Unfortunately, option chains are well beyond the ability of your humble author.
You are encouraged to read the official API documentation to learn more.

If you are knowledgeable enough to write something more substantive here,
please follow the instructions in Contributing to tda-api to send in a patch.

	
Client.get_option_chain(symbol, *, contract_type=None, strike_count=None, include_quotes=None, strategy=None, interval=None, strike=None, strike_range=None, from_date=None, to_date=None, volatility=None, underlying_price=None, interest_rate=None, days_to_expiration=None, exp_month=None, option_type=None)

	Get option chain for an optionable Symbol.
Official documentation [https://developer.tdameritrade.com/option-chains/apis/get/marketdata/chains].

	Parameters

	
	contract_type – Type of contracts to return in the chain. See
Options.ContractType for choices.

	strike_count – The number of strikes to return above and below
the at-the-money price.

	include_quotes – Include quotes for options in the option chain?

	strategy – If passed, returns a Strategy Chain. See
Options.Strategy for choices.

	interval – Strike interval for spread strategy chains (see
strategy param).

	strike – Return options only at this strike price.

	strike_range – Return options for the given range. See
Options.StrikeRange for choices.

	from_date – Only return expirations after this date. For
strategies, expiration refers to the nearest term
expiration in the strategy. Accepts datetime.date
and datetime.datetime.

	to_date – Only return expirations before this date. For
strategies, expiration refers to the nearest term
expiration in the strategy. Accepts datetime.date
and datetime.datetime.

	volatility – Volatility to use in calculations. Applies only to
ANALYTICAL strategy chains.

	underlying_price – Underlying price to use in calculations.
Applies only to ANALYTICAL strategy chains.

	interest_rate – Interest rate to use in calculations. Applies only
to ANALYTICAL strategy chains.

	days_to_expiration – Days to expiration to use in calculations.
Applies only to ANALYTICAL strategy
chains

	exp_month – Return only options expiring in the specified month. See
Options.ExpirationMonth for choices.

	option_type – Types of options to return. See
Options.Type for choices.

	
class tda.client.Client.Options

	
	
class ContractType

	An enumeration.

	
ALL = 'ALL'

	

	
CALL = 'CALL'

	

	
PUT = 'PUT'

	

	
class ExpirationMonth

	An enumeration.

	
APRIL = 'APR'

	

	
AUGUST = 'AUG'

	

	
DECEMBER = 'DEC'

	

	
FEBRUARY = 'FEB'

	

	
JANUARY = 'JAN'

	

	
JULY = 'JUL'

	

	
JUNE = 'JUN'

	

	
MARCH = 'MAR'

	

	
MAY = 'MAY'

	

	
NOVEMBER = 'NOV'

	

	
OCTOBER = 'OCT'

	

	
SEPTEMBER = 'SEP'

	

	
class Strategy

	An enumeration.

	
ANALYTICAL = 'ANALYTICAL'

	

	
BUTTERFLY = 'BUTTERFLY'

	

	
CALENDAR = 'CALENDAR'

	

	
COLLAR = 'COLLAR'

	

	
CONDOR = 'CONDOR'

	

	
COVERED = 'COVERED'

	

	
DIAGONAL = 'DIAGONAL'

	

	
ROLL = 'ROLL'

	

	
SINGLE = 'SINGLE'

	

	
STRADDLE = 'STRADDLE'

	

	
STRANGLE = 'STRANGLE'

	

	
VERTICAL = 'VERTICAL'

	

	
class StrikeRange

	An enumeration.

	
ALL = 'ALL'

	

	
IN_THE_MONEY = 'IN_THE_MONEY'

	

	
NEAR_THE_MONEY = 'NEAR_THE_MONEY'

	

	
OUT_OF_THE_MONEY = 'OUT_OF_THE_MONEY'

	

	
STRIKES_ABOVE_MARKET = 'STRIKES_ABOVE_MARKET'

	

	
STRIKES_BELOW_MARKET = 'STRIKES_BELOW_MARKET'

	

	
STRIKES_NEAR_MARKET = 'STRIKES_NEAR_MARKET'

	

	
class Type

	An enumeration.

	
ALL = 'ALL'

	

	
NON_STANDARD = 'NS'

	

	
STANDARD = 'S'

	

Price History

Fetching price history is somewhat complicated due to the fact that only certain
combinations of parameters are valid. To avoid accidentally making it impossible
to send valid requests, this method performs no validation on its parameters. If
you are receiving empty requests or other weird return values, see the official
documentation for more details.

	
Client.get_price_history(symbol, *, period_type=None, period=None, frequency_type=None, frequency=None, start_datetime=None, end_datetime=None, need_extended_hours_data=None)

	Get price history for a symbol.
Official documentation [https://developer.tdameritrade.com/price-history/apis/get/marketdata/%7Bsymbol%7D/pricehistory].

	Parameters

	
	period_type – The type of period to show.

	period – The number of periods to show. Should not be provided if
start_datetime and end_datetime.

	frequency_type – The type of frequency with which a new candle
is formed.

	frequency – The number of the frequencyType to be included in each
candle.

	start_datetime – Start date.

	end_datetime – End date. Default is previous trading day.

	need_extended_hours_data – If true, return extended hours data.
Otherwise return regular market hours
only.

	
class tda.client.Client.PriceHistory

	
	
class Frequency

	An enumeration.

	
DAILY = 1

	

	
EVERY_FIFTEEN_MINUTES = 15

	

	
EVERY_FIVE_MINUTES = 5

	

	
EVERY_MINUTE = 1

	

	
EVERY_TEN_MINUTES = 10

	

	
EVERY_THIRTY_MINUTES = 30

	

	
MONTHLY = 1

	

	
WEEKLY = 1

	

	
class FrequencyType

	An enumeration.

	
DAILY = 'daily'

	

	
MINUTE = 'minute'

	

	
MONTHLY = 'monthly'

	

	
WEEKLY = 'weekly'

	

	
class Period

	An enumeration.

	
FIFTEEN_YEARS = 15

	

	
FIVE_DAYS = 5

	

	
FIVE_YEARS = 5

	

	
FOUR_DAYS = 4

	

	
ONE_DAY = 1

	

	
ONE_MONTH = 1

	

	
ONE_YEAR = 1

	

	
SIX_MONTHS = 6

	

	
TEN_DAYS = 10

	

	
TEN_YEARS = 10

	

	
THREE_DAYS = 3

	

	
THREE_MONTHS = 3

	

	
THREE_YEARS = 3

	

	
TWENTY_YEARS = 20

	

	
TWO_DAYS = 2

	

	
TWO_MONTHS = 2

	

	
TWO_YEARS = 2

	

	
YEAR_TO_DATE = 1

	

	
class PeriodType

	An enumeration.

	
DAY = 'day'

	

	
MONTH = 'month'

	

	
YEAR = 'year'

	

	
YEAR_TO_DATE = 'ytd'

	

Current Quotes

	
Client.get_quote(symbol)

	Get quote for a symbol. Note due to limitations in URL encoding, this
method is not recommended for instruments with symbols symbols
containing non-alphanumeric characters, for example as futures like
/ES. To get quotes for those symbols, use Client.get_quotes().

Official documentation [https://developer.tdameritrade.com/quotes/apis/get/marketdata/%7Bsymbol%7D/quotes].

	
Client.get_quotes(symbols)

	Get quote for a symbol. This method supports all symbols, including
those containing non-alphanumeric characters like /ES.
Official documentation [https://developer.tdameritrade.com/quotes/apis/get/marketdata/quotes].

Other Endpoints

Note If your account limited to delayed quotes, these quotes will also be
delayed.

Transaction History

	
Client.get_transaction(account_id, transaction_id)

	Transaction for a specific account.
Official documentation [https://developer.tdameritrade.com/transaction-history/apis/get/accounts/%7BaccountId%7D/transactions/%7BtransactionId%7D-0].

	
Client.get_transactions(account_id, *, transaction_type=None, symbol=None, start_date=None, end_date=None)

	Transaction for a specific account.
Official documentation [https://developer.tdameritrade.com/transaction-history/apis/get/accounts/%7BaccountId%7D/transactions-0].

	Parameters

	
	transaction_type – Only transactions with the specified type will
be returned.

	symbol – Only transactions with the specified symbol will be
returned.

	start_date – Only transactions after this date will be returned.
Note the maximum date range is one year.
Accepts datetime.date and datetime.datetime.

	end_date – Only transactions before this date will be returned
Note the maximum date range is one year.
Accepts datetime.date and datetime.datetime.

	
class tda.client.Client.Transactions

	
	
class TransactionType

	An enumeration.

	
ADVISORY_FEES = 'ADVISORY_FEES'

	

	
ALL = 'ALL'

	

	
BUY_ONLY = 'BUY_ONLY'

	

	
CASH_IN_OR_CASH_OUT = 'CASH_IN_OR_CASH_OUT'

	

	
CHECKING = 'CHECKING'

	

	
DIVIDEND = 'DIVIDEND'

	

	
INTEREST = 'INTEREST'

	

	
OTHER = 'OTHER'

	

	
SELL_ONLY = 'SELL_ONLY'

	

	
TRADE = 'TRADE'

	

Saved Orders

	
Client.create_saved_order(account_id, order_spec)

	Save an order for a specific account.
Official documentation [https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/savedorders-0].

	
Client.delete_saved_order(account_id, order_id)

	Delete a specific saved order for a specific account.
Official documentation [https://developer.tdameritrade.com/account-access/apis/delete/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0].

	
Client.get_saved_order(account_id, order_id)

	Specific saved order by its ID, for a specific account.
Official documentation [https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0].

	
Client.get_saved_orders_by_path(account_id)

	Saved orders for a specific account.
Official documentation [https://developer.tdameritrade.com/account-access/apis/get/accounts/%7BaccountId%7D/savedorders-0].

	
Client.replace_saved_order(account_id, order_id, order_spec)

	Replace an existing saved order for an account. The existing saved
order will be replaced by the new order.
Official documentation [https://developer.tdameritrade.com/account-access/apis/put/accounts/%7BaccountId%7D/savedorders/%7BsavedOrderId%7D-0].

Market Hours

	
Client.get_hours_for_multiple_markets(markets, date)

	Retrieve market hours for specified markets.
Official documentation [https://developer.tdameritrade.com/market-hours/apis/get/marketdata/hours].

	Parameters

	
	markets – Market to return hours for. Iterable of
Markets.

	date – The date for which market hours information is requested.
Accepts datetime.date and datetime.datetime.

	
Client.get_hours_for_single_market(market, date)

	Retrieve market hours for specified single market.
Official documentation [https://developer.tdameritrade.com/market-hours/apis/get/marketdata/%7Bmarket%7D/hours].

	Parameters

	
	markets – Market to return hours for. Instance of
Markets.

	date – The date for which market hours information is requested.
Accepts datetime.date and datetime.datetime.

	
class tda.client.Client.Markets

	Values for get_hours_for_multiple_markets() and
get_hours_for_single_market().

	
BOND = 'BOND'

	

	
EQUITY = 'EQUITY'

	

	
FOREX = 'FOREX'

	

	
FUTURE = 'FUTURE'

	

	
OPTION = 'OPTION'

	

Movers

	
Client.get_movers(index, direction, change)

	Top 10 (up or down) movers by value or percent for a particular
market.
Official documentation [https://developer.tdameritrade.com/movers/apis/get/marketdata/%7Bindex%7D/movers].

	Parameters

	
	direction – See Movers.Direction

	change – See Movers.Change

	
class tda.client.Client.Movers

	
	
class Change

	Values for get_movers()

	
PERCENT = 'percent'

	

	
VALUE = 'value'

	

	
class Direction

	Values for get_movers()

	
DOWN = 'down'

	

	
UP = 'up'

	

User Info and Preferences

	
Client.get_preferences(account_id)

	Preferences for a specific account.
Official documentation [https://developer.tdameritrade.com/user-principal/apis/get/accounts/%7BaccountId%7D/preferences-0].

	
Client.get_user_principals(fields=None)

	User Principal details.
Official documentation [https://developer.tdameritrade.com/user-principal/apis/get/userprincipals-0].

	
Client.update_preferences(account_id, preferences)

	Update preferences for a specific account.

Please note that the directOptionsRouting and directEquityRouting values
cannot be modified via this operation.
Official documentation [https://developer.tdameritrade.com/user-principal/apis/put/accounts/%7BaccountId%7D/preferences-0].

	
class tda.client.Client.UserPrincipals

	
	
class Fields

	An enumeration.

	
PREFERENCES = 'preferences'

	

	
STREAMER_CONNECTION_INFO = 'streamerConnectionInfo'

	

	
STREAMER_SUBSCRIPTION_KEYS = 'streamerSubscriptionKeys'

	

	
SURROGATE_IDS = 'surrogateIds'

	

Watchlists

Note: These methods only support static watchlists, i.e. they cannot access
dynamic watchlists.

	
Client.create_watchlist(account_id, watchlist_spec)

	‘Create watchlist for specific account.This method does not verify
that the symbol or asset type are valid.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/post/accounts/%7BaccountId%7D/watchlists-0].

	
Client.delete_watchlist(account_id, watchlist_id)

	Delete watchlist for a specific account.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/delete/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0].

	
Client.get_watchlist(account_id, watchlist_id)

	Specific watchlist for a specific account.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/get/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0].

	
Client.get_watchlists_for_multiple_accounts()

	All watchlists for all of the user’s linked accounts.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/get/accounts/watchlists-0].

	
Client.get_watchlists_for_single_account(account_id)

	All watchlists of an account.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/get/accounts/%7BaccountId%7D/watchlists-0].

	
Client.replace_watchlist(account_id, watchlist_id, watchlist_spec)

	Replace watchlist for a specific account. This method does not verify
that the symbol or asset type are valid.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/put/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0].

	
Client.update_watchlist(account_id, watchlist_id, watchlist_spec)

	Partially update watchlist for a specific account: change watchlist
name, add to the beginning/end of a watchlist, update or delete items in
a watchlist. This method does not verify that the symbol or asset type
are valid.
Official documentation [https://developer.tdameritrade.com/watchlist/apis/patch/accounts/%7BaccountId%7D/watchlists/%7BwatchlistId%7D-0].

Streaming Client

A wapper around the
TD Ameritrade Streaming API [https://developer.tdameritrade.com/content/streaming-data]. This API is a
websockets-based streaming API that provides to up-to-the-second data on market
activity. Most impressively, it provides realtime data, including Level Two and
time of sale data for major equities, options, and futures exchanges.

Here’s an example of how you can receive book snapshots of GOOG (note if you
run this outside regular trading hours you may not see anything):

from tda.auth import easy_client
from tda.client import Client
from tda.streaming import StreamClient

import asyncio
import json

client = easy_client(
 api_key='APIKEY',
 redirect_uri='https://localhost',
 token_path='/tmp/token.pickle')
stream_client = StreamClient(client, account_id=1234567890)

async def read_stream():
 await stream_client.login()
 await stream_client.quality_of_service(StreamClient.QOSLevel.EXPRESS)

 # Always add handlers before subscribing because many streams start sending
 # data immediately after success, and messages with no handlers are dropped.
 stream_client.add_nasdaq_book_handler(
 lambda msg: print(json.dumps(msg, indent=4)))
 await stream_client.nasdaq_book_subs(['GOOG'])

 while True:
 await stream_client.handle_message()

asyncio.run(read_stream())

This API uses Python
coroutines [https://docs.python.org/3/library/asyncio-task.html] to simplify
implementation and preserve performance. As a result, it requires Python 3.8 or
higher to use. tda.stream will not be available on older versions of Python.

Use Overview

The example above demonstrates the end-to-end workflow for using tda.stream.
There’s more in there than meets the eye, so let’s dive into the details.

Logging In

Before we can perform any stream operations, the client must be logged in to the
stream. Unlike the HTTP client, in which every request is authenticated using a
token, this client sends unauthenticated requests and instead authenticates the
entire stream. As a result, this login process is distinct from the token
generation step that’s used in the HTTP client.

Stream login is accomplished simply by calling StreamClient.login(). Once
this happens successfully, all stream operations can be performed. Attemping to
perform operations that require login before this function is called raises an
exception.

	
StreamClient.login()

	Official Documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640574]

	Performs initial stream setup:

	
	Fetches streaming information from the HTTP client’s
get_user_principals() method

	Initializes the socket

	Builds and sends and authentication request

	Waits for response indicating login success

All stream operations are available after this method completes.

Setting Quality of Service

By default, the stream’s update frequency is set to 1000ms. The frequency can be
increased by calling the quality_of_service function and passing an
appropriate QOSLevel value.

	
StreamClient.quality_of_service(qos_level)

	Official Documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640578]

Specifies the frequency with which updated data should be sent to the
client. If not called, the frequency will default to every second.

	Parameters

	qos_level – Quality of service level to request. See
QOSLevel for options.

	
class StreamClient.QOSLevel

	Quality of service levels

	
EXPRESS = '0'

	500ms between updates. Fastest available

	
REAL_TIME = '1'

	750ms between updates

	
FAST = '2'

	1000ms between updates. Default value.

	
MODERATE = '3'

	1500ms between updates

	
SLOW = '4'

	3000ms between updates

	
DELAYED = '5'

	5000ms between updates

Subscribing to Streams

These functions have names that follow the pattern SERVICE_NAME_subs. These
functions send a request to enable streaming data for a particular data stream.
They are not thread safe, so they should only be called in series.

When subscriptions are called multiple times on the same stream, the results
vary. What’s more, these results aren’t documented in the official
documentation. As a result, it’s recommended not to call a subscription function
more than once for any given stream.

Some services, notably Equity Charts and Futures Charts,
offer SERVICE_NAME_add functions which can be used to add symbols to the
stream after the subscription has been created. For others, calling the
subscription methods again seems to clear the old subscription and create a new
one. Note this behavior is not officially documented, so this interpretation may
be incorrect.

Registering Handlers

By themselves, the subscription functions outlined above do nothing except cause
messages to be sent to the client. The add_SERVICE_NAME_handler functions
register functions that will receive these messages when they arrive. When
messages arrive, these handlers will be called serially. There is no limit to
the number of handlers that can be registered to a service.

Handling Messages

Once the stream client is properly logged in, subscribed to streams, and has
handlers registered, we can start handling messages. This is done simply by
awaiting on the handle_message() function. This function reads a single
message and dispatches it to the appropriate handler or handlers.

If a message is received for which no handler is registered, that message is
ignored.

Handlers should take a single argument representing the stream message received:

import json

def sample_handler(msg):
 print(json.dumps(msg, indent=4))

Data Field Relabeling

Under the hood, this API returns JSON objects with numerical key representing
labels:

{
 "service": "CHART_EQUITY",
 "timestamp": 1590597641293,
 "command": "SUBS",
 "content": [
 {
 "seq": 985,
 "key": "MSFT",
 "1": 179.445,
 "2": 179.57,
 "3": 179.4299,
 "4": 179.52,
 "5": 53742.0,
 "6": 339,
 "7": 1590597540000,
 "8": 18409
 },
]
}

These labels are tricky to decode, and require a knowledge of the documentation
to decode properly. tda-api makes your life easier by doing this decoding
for you, replacing numerical labels with strings pulled from the documentation.
For instance, the message above would be relabeled as:

{
 "service": "CHART_EQUITY",
 "timestamp": 1590597641293,
 "command": "SUBS",
 "content": [
 {
 "seq": 985,
 "key": "MSFT",
 "OPEN_PRICE": 179.445,
 "HIGH_PRICE": 179.57,
 "LOW_PRICE": 179.4299,
 "CLOSE_PRICE": 179.52,
 "VOLUME": 53742.0,
 "SEQUENCE": 339,
 "CHART_TIME": 1590597540000,
 "CHART_DAY": 18409
 },
]
}

This documentation describes the various fields and their numerical values. You
can find them by investigating the various enum classes ending in ***Fields.

Some streams, such as the ones described in Level One Quotes, allow you to
specify a subset of fields to be returned. Subscription handlers for these
services take a list of the appropriate field enums the extra fields
parameter. If nothing is passed to this parameter, all supported fields are
requested.

Interpreting Sequence Numbers

Many endpoints include a seq parameter in their data contents. The official
documentation is unclear on the interpretation of this value: the time of sale [https://developer.tdameritrade.com/content/streaming-data#_Toc504640628]
documentation states that messages containing already-observed values of seq
can be ignored, but other streams contain this field both in their metadata and
in their content, and yet their documentation doesn’t mention ignoring any
seq values.

This presents a design choice: should tda-api ignore duplicate seq
values on users’ behalf? Given the ambiguity of the documentation, it was
decided to not ignore them and instead pass them to all handlers. Clients
are encouraged to use their judgment in handling these values.

Unimplemented Streams

This document lists the streams supported by tda-api. Eagle-eyed readers may
notice that some streams are described in the documentation but were not
implemented. This is due to complexity or anticipated lack of interest. If you
feel you’d like a stream added, please file an issue
here [https://github.com/alexgolec/tda-api/issues] or see the
contributing guidelines [https://github.com/alexgolec/tda-api/blob/master/CONTRIBUTING.rst] to learn how to add the functionality yourself.

Enabling Real-Time Data Access

By default, TD Ameritrade delivers delayed quotes. However, as of this writing,
real time streaming is available for all streams, including quotes and level two
depth of book data. It is also available for free, which in the author’s opinion
is an impressive feature for a retail brokerage. For most users it’s enough to
sign the relevant exchange agreements [https://invest.ameritrade.com/grid/p/site#r=jPage/cgi-bin/apps/u/AccountSettings] and then subscribe to the
relevant streams [https://invest.ameritrade.com/grid/p/site#r=jPage/cgi-bin/apps/u/Subscriptions], although your mileage may vary.

Please remember that your use of this API is subject to agreeing to
TDAmeritrade’s terms of service. Please don’t reach out to us asking for help
enabling real-time data. Answers to most questions are a Google search away.

OHLCV Charts

These streams summarize trading activity on a minute-by-minute basis for
equities and futures, providing OHLCV (Open/High/Low/Close/Volume) data.

Equity Charts

Minute-by-minute OHLCV data for equities.

	
StreamClient.chart_equity_subs(symbols)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640587]

Subscribe to equity charts. Behavior is undefined if called multiple
times.

	Parameters

	symbols – Equity symbols to subscribe to.

	
StreamClient.chart_equity_add(symbols)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640588]

Add a symbol to the equity charts subscription. Behavior is undefined
if called before chart_equity_subs().

	Parameters

	symbols – Equity symbols to add to the subscription.

	
StreamClient.add_chart_equity_handler(handler)

	Adds a handler to the equity chart subscription. See
Handling Messages for details.

	
class StreamClient.ChartEquityFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640589]

Data fields for equity OHLCV data. Primarily an implementation detail
and not used in client code. Provided here as documentation for key
values stored returned in the stream messages.

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
OPEN_PRICE = 1

	Opening price for the minute

	
HIGH_PRICE = 2

	Highest price for the minute

	
LOW_PRICE = 3

	Chart’s lowest price for the minute

	
CLOSE_PRICE = 4

	Closing price for the minute

	
VOLUME = 5

	Total volume for the minute

	
SEQUENCE = 6

	Identifies the candle minute. Explicitly labeled “not useful” in the
official documentation.

	
CHART_TIME = 7

	Milliseconds since Epoch

	
CHART_DAY = 8

	Documented as not useful, included for completeness

Futures Charts

Minute-by-minute OHLCV data for futures.

	
StreamClient.chart_futures_subs(symbols)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640587]

Subscribe to futures charts. Behavior is undefined if called multiple
times.

	Parameters

	symbols – Futures symbols to subscribe to.

	
StreamClient.chart_futures_add(symbols)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640590]

Add a symbol to the futures chart subscription. Behavior is undefined
if called before chart_futures_subs().

	Parameters

	symbols – Futures symbols to add to the subscription.

	
StreamClient.add_chart_futures_handler(handler)

	Adds a handler to the futures chart subscription. See
Handling Messages for details.

	
class StreamClient.ChartFuturesFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640592]

Data fields for equity OHLCV data. Primarily an implementation detail
and not used in client code. Provided here as documentation for key
values stored returned in the stream messages.

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
CHART_TIME = 1

	Milliseconds since Epoch

	
OPEN_PRICE = 2

	Opening price for the minute

	
HIGH_PRICE = 3

	Highest price for the minute

	
LOW_PRICE = 4

	Chart’s lowest price for the minute

	
CLOSE_PRICE = 5

	Closing price for the minute

	
VOLUME = 6

	Total volume for the minute

Level One Quotes

Level one quotes provide an up-to-date view of bid/ask/volume data. In
particular they list the best available bid and ask prices, together with the
requested volume of each. They are updated live as market conditions change.

Equities Quotes

Level one quotes for equities traded on NYSE, AMEX, and PACIFIC.

	
StreamClient.level_one_equity_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640599]

Subscribe to level one equity quote data.

	Parameters

	
	symbols – Equity symbols to receive quotes for

	fields – Iterable of LevelOneEquityFields representing
the fields to return in streaming entries. If unset, all
fields will be requested.

	
StreamClient.add_level_one_equity_handler(handler)

	Register a function to handle level one equity quotes as they are sent.
See Handling Messages for details.

	
class StreamClient.LevelOneEquityFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640599]

Fields for equity quotes.

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
BID_PRICE = 1

	Current Best Bid Price

	
ASK_PRICE = 2

	Current Best Ask Price

	
LAST_PRICE = 3

	Price at which the last trade was matched

	
BID_SIZE = 4

	Number of shares for bid

	
ASK_SIZE = 5

	Number of shares for ask

	
ASK_ID = 6

	Exchange with the best ask

	
BID_ID = 7

	Exchange with the best bid

	
TOTAL_VOLUME = 8

	Aggregated shares traded throughout the day, including pre/post
market hours. Note volume is set to zero at 7:28am ET.

	
LAST_SIZE = 9

	Number of shares traded with last trade, in 100’s

	
TRADE_TIME = 10

	Trade time of the last trade, in seconds since midnight EST

	
QUOTE_TIME = 11

	Trade time of the last quote, in seconds since midnight EST

	
HIGH_PRICE = 12

	Day’s high trade price. Notes:

	According to industry standard, only regular session trades set
the High and Low.

	If a stock does not trade in the AM session, high and low will be
zero.

	High/low reset to 0 at 7:28am ET

	
LOW_PRICE = 13

	Day’s low trade price. Same notes as HIGH_PRICE.

	
BID_TICK = 14

	Indicates Up or Downtick (NASDAQ NMS & Small Cap). Updates whenever
bid updates.

	
CLOSE_PRICE = 15

	Previous day’s closing price. Notes:

	Closing prices are updated from the DB when Pre-Market tasks are
run by TD Ameritrade at 7:29AM ET.

	As long as the symbol is valid, this data is always present.

	This field is updated every time the closing prices are loaded
from DB

	
EXCHANGE_ID = 16

	Primary “listing” Exchange.

	
MARGINABLE = 17

	Stock approved by the Federal Reserve and an investor’s broker as
being suitable for providing collateral for margin debt?

	
SHORTABLE = 18

	Stock can be sold short?

	
ISLAND_BID_DEPRECATED = 19

	Deprecated, documented for completeness.

	
ISLAND_ASK_DEPRECATED = 20

	Deprecated, documented for completeness.

	
ISLAND_VOLUME_DEPRECATED = 21

	Deprecated, documented for completeness.

	
QUOTE_DAY = 22

	Day of the quote

	
TRADE_DAY = 23

	Day of the trade

	
VOLATILITY = 24

	Option Risk/Volatility Measurement. Notes:

	Volatility is reset to 0 when Pre-Market tasks are run at 7:28 AM
ET

	Once per day descriptions are loaded from the database when
Pre-Market tasks are run at 7:29:50 AM ET.

	
DESCRIPTION = 25

	A company, index or fund name

	
LAST_ID = 26

	Exchange where last trade was executed

	
DIGITS = 27

	Valid decimal points. 4 digits for AMEX, NASDAQ, OTCBB, and PINKS,
2 for others.

	
OPEN_PRICE = 28

	Day’s Open Price. Notes:

	Open is set to ZERO when Pre-Market tasks are run at 7:28.

	If a stock doesn’t trade the whole day, then the open price is 0.

	In the AM session, Open is blank because the AM session trades do
not set the open.

	
NET_CHANGE = 29

	Current Last-Prev Close

	
HIGH_52_WEEK = 30

	Highest price traded in the past 12 months, or 52 weeks

	
LOW_52_WEEK = 31

	Lowest price traded in the past 12 months, or 52 weeks

	
PE_RATIO = 32

	Price to earnings ratio

	
DIVIDEND_AMOUNT = 33

	Dividen earnings Per Share

	
DIVIDEND_YIELD = 34

	Dividend Yield

	
ISLAND_BID_SIZE_DEPRECATED = 35

	Deprecated, documented for completeness.

	
ISLAND_ASK_SIZE_DEPRECATED = 36

	Deprecated, documented for completeness.

	
NAV = 37

	Mutual Fund Net Asset Value

	
FUND_PRICE = 38

	Mutual fund price

	
EXCHANGE_NAME = 39

	Display name of exchange

	
DIVIDEND_DATE = 40

	Dividend date

	
IS_REGULAR_MARKET_QUOTE = 41

	Is last quote a regular quote

	
IS_REGULAR_MARKET_TRADE = 42

	Is last trade a regular trade

	
REGULAR_MARKET_LAST_PRICE = 43

	Last price, only used when IS_REGULAR_MARKET_TRADE is True

	
REGULAR_MARKET_LAST_SIZE = 44

	Last trade size, only used when IS_REGULAR_MARKET_TRADE is True

	
REGULAR_MARKET_TRADE_TIME = 45

	Last trade time, only used when IS_REGULAR_MARKET_TRADE is True

	
REGULAR_MARKET_TRADE_DAY = 46

	Last trade date, only used when IS_REGULAR_MARKET_TRADE is True

	
REGULAR_MARKET_NET_CHANGE = 47

	REGULAR_MARKET_LAST_PRICE minus CLOSE_PRICE

	
SECURITY_STATUS = 48

	Indicates a symbols current trading status, Normal, Halted, Closed

	
MARK = 49

	Mark Price

	
QUOTE_TIME_IN_LONG = 50

	Last quote time in milliseconds since Epoch

	
TRADE_TIME_IN_LONG = 51

	Last trade time in milliseconds since Epoch

	
REGULAR_MARKET_TRADE_TIME_IN_LONG = 52

	Regular market trade time in milliseconds since Epoch

Options Quotes

Level one quotes for options. Note you can use
Client.get_option_chain() to fetch
available option symbols.

	
StreamClient.level_one_option_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640602]

Subscribe to level one option quote data.

	Parameters

	
	symbols – Option symbols to receive quotes for

	fields – Iterable of LevelOneOptionFields representing
the fields to return in streaming entries. If unset, all
fields will be requested.

	
StreamClient.add_level_one_option_handler(handler)

	Register a function to handle level one options quotes as they are sent.
See Handling Messages for details.

	
class StreamClient.LevelOneOptionFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640601]

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
DESCRIPTION = 1

	A company, index or fund name

	
BID_PRICE = 2

	Current Best Bid Price

	
ASK_PRICE = 3

	Current Best Ask Price

	
LAST_PRICE = 4

	Price at which the last trade was matched

	
HIGH_PRICE = 5

	Day’s high trade price. Notes:

	According to industry standard, only regular session trades set
the High and Low.

	If an option does not trade in the AM session, high and low will
be zero.

	High/low reset to 0 at 7:28am ET.

	
LOW_PRICE = 6

	Day’s low trade price. Same notes as HIGH_PRICE.

	
CLOSE_PRICE = 7

	Previous day’s closing price. Closing prices are updated from the
DB when Pre-Market tasks are run at 7:29AM ET.

	
TOTAL_VOLUME = 8

	Aggregated shares traded throughout the day, including pre/post
market hours. Reset to zero at 7:28am ET.

	
OPEN_INTEREST = 9

	Open interest

	
VOLATILITY = 10

	Option Risk/Volatility Measurement. Volatility is reset to 0 when
Pre-Market tasks are run at 7:28 AM ET.

	
QUOTE_TIME = 11

	Trade time of the last quote in seconds since midnight EST

	
TRADE_TIME = 12

	Trade time of the last quote in seconds since midnight EST

	
MONEY_INTRINSIC_VALUE = 13

	Money intrinsic value

	
QUOTE_DAY = 14

	Day of the quote

	
TRADE_DAY = 15

	Day of the trade

	
EXPIRATION_YEAR = 16

	Option expiration year

	
MULTIPLIER = 17

	Option multiplier

	
DIGITS = 18

	Valid decimal points. 4 digits for AMEX, NASDAQ, OTCBB, and PINKS,
2 for others.

	
OPEN_PRICE = 19

	Day’s Open Price. Notes:

	Open is set to ZERO when Pre-Market tasks are run at 7:28.

	If a stock doesn’t trade the whole day, then the open price is 0.

	In the AM session, Open is blank because the AM session trades do
not set the open.

	
BID_SIZE = 20

	Number of shares for bid

	
ASK_SIZE = 21

	Number of shares for ask

	
LAST_SIZE = 22

	Number of shares traded with last trade, in 100’s

	
NET_CHANGE = 23

	Current Last-Prev Close

	
STRIKE_PRICE = 24

	

	
CONTRACT_TYPE = 25

	

	
UNDERLYING = 26

	

	
EXPIRATION_MONTH = 27

	

	
DELIVERABLES = 28

	

	
TIME_VALUE = 29

	

	
EXPIRATION_DAY = 30

	

	
DAYS_TO_EXPIRATION = 31

	

	
DELTA = 32

	

	
GAMMA = 33

	

	
THETA = 34

	

	
VEGA = 35

	

	
RHO = 36

	

	
SECURITY_STATUS = 37

	Indicates a symbols current trading status, Normal, Halted, Closed

	
THEORETICAL_OPTION_VALUE = 38

	

	
UNDERLYING_PRICE = 39

	

	
UV_EXPIRATION_TYPE = 40

	

	
MARK = 41

	Mark Price

Futures Quotes

Level one quotes for futures.

	
StreamClient.level_one_futures_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640604]

Subscribe to level one futures quote data.

	Parameters

	
	symbols – Futures symbols to receive quotes for

	fields – Iterable of LevelOneFuturesFields representing
the fields to return in streaming entries. If unset, all
fields will be requested.

	
StreamClient.add_level_one_futures_handler(handler)

	Register a function to handle level one futures quotes as they are sent.
See Handling Messages for details.

	
class StreamClient.LevelOneFuturesFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640603]

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
BID_PRICE = 1

	Current Best Bid Price

	
ASK_PRICE = 2

	Current Best Ask Price

	
LAST_PRICE = 3

	Price at which the last trade was matched

	
BID_SIZE = 4

	Number of shares for bid

	
ASK_SIZE = 5

	Number of shares for ask

	
ASK_ID = 6

	Exchange with the best ask

	
BID_ID = 7

	Exchange with the best bid

	
TOTAL_VOLUME = 8

	Aggregated shares traded throughout the day, including pre/post
market hours

	
LAST_SIZE = 9

	Number of shares traded with last trade

	
QUOTE_TIME = 10

	Trade time of the last quote in milliseconds since epoch

	
TRADE_TIME = 11

	Trade time of the last trade in milliseconds since epoch

	
HIGH_PRICE = 12

	Day’s high trade price

	
LOW_PRICE = 13

	Day’s low trade price

	
CLOSE_PRICE = 14

	Previous day’s closing price

	
EXCHANGE_ID = 15

	Primary “listing” Exchange. Notes:
* I → ICE
* E → CME
* L → LIFFEUS

	
DESCRIPTION = 16

	Description of the product

	
LAST_ID = 17

	Exchange where last trade was executed

	
OPEN_PRICE = 18

	Day’s Open Price

	
NET_CHANGE = 19

	Current Last-Prev Close

	
FUTURE_PERCENT_CHANGE = 20

	Current percent change

	
EXCHANGE_NAME = 21

	Name of exchange

	
SECURITY_STATUS = 22

	Trading status of the symbol. Indicates a symbol’s current trading
status, Normal, Halted, Closed.

	
OPEN_INTEREST = 23

	The total number of futures ontracts that are not closed or delivered
on a particular day

	
MARK = 24

	Mark-to-Market value is calculated daily using current prices to
determine profit/loss

	
TICK = 25

	Minimum price movement

	
TICK_AMOUNT = 26

	Minimum amount that the price of the market can change

	
PRODUCT = 27

	Futures product

	
FUTURE_PRICE_FORMAT = 28

	Display in fraction or decimal format.

	
FUTURE_TRADING_HOURS = 29

	Trading hours. Notes:

	days: 0 = monday-friday, 1 = sunday.

	7 = Saturday

	0 = [-2000,1700] ==> open, close

	1 = [-1530,-1630,-1700,1515] ==> open, close, open, close

	0 = [-1800,1700,d,-1700,1900] ==> open, close, DST-flag, open, close

	If the DST-flag is present, the following hours are for DST days:
http://www.cmegroup.com/trading_hours/

	
FUTURE_IS_TRADEABLE = 30

	Flag to indicate if this future contract is tradable

	
FUTURE_MULTIPLIER = 31

	Point value

	
FUTURE_IS_ACTIVE = 32

	Indicates if this contract is active

	
FUTURE_SETTLEMENT_PRICE = 33

	Closing price

	
FUTURE_ACTIVE_SYMBOL = 34

	Symbol of the active contract

	
FUTURE_EXPIRATION_DATE = 35

	Expiration date of this contract in milliseconds since epoch

Forex Quotes

Level one quotes for foreign exchange pairs.

	
StreamClient.level_one_forex_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640606]

Subscribe to level one forex quote data.

	Parameters

	
	symbols – Forex symbols to receive quotes for

	fields – Iterable of LevelOneForexFields representing
the fields to return in streaming entries. If unset, all
fields will be requested.

	
StreamClient.add_level_one_forex_handler(handler)

	Register a function to handle level one forex quotes as they are sent.
See Handling Messages for details.

	
class StreamClient.LevelOneForexFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640606]

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
BID_PRICE = 1

	Current Best Bid Price

	
ASK_PRICE = 2

	Current Best Ask Price

	
LAST_PRICE = 3

	Price at which the last trade was matched

	
BID_SIZE = 4

	Number of shares for bid

	
ASK_SIZE = 5

	Number of shares for ask

	
TOTAL_VOLUME = 6

	Aggregated shares traded throughout the day, including pre/post
market hours

	
LAST_SIZE = 7

	Number of shares traded with last trade

	
QUOTE_TIME = 8

	Trade time of the last quote in milliseconds since epoch

	
TRADE_TIME = 9

	Trade time of the last trade in milliseconds since epoch

	
HIGH_PRICE = 10

	Day’s high trade price

	
LOW_PRICE = 11

	Day’s low trade price

	
CLOSE_PRICE = 12

	Previous day’s closing price

	
EXCHANGE_ID = 13

	Primary “listing” Exchange

	
DESCRIPTION = 14

	Description of the product

	
OPEN_PRICE = 15

	Day’s Open Price

	
NET_CHANGE = 16

	Current Last-Prev Close

	
EXCHANGE_NAME = 18

	Name of exchange

	
DIGITS = 19

	Valid decimal points

	
SECURITY_STATUS = 20

	Trading status of the symbol. Indicates a symbols current trading
status, Normal, Halted, Closed.

	
TICK = 21

	Minimum price movement

	
TICK_AMOUNT = 22

	Minimum amount that the price of the market can change

	
PRODUCT = 23

	Product name

	
TRADING_HOURS = 24

	Trading hours

	
IS_TRADABLE = 25

	Flag to indicate if this forex is tradable

	
MARKET_MAKER = 26

	

	
HIGH_52_WEEK = 27

	Higest price traded in the past 12 months, or 52 weeks

	
LOW_52_WEEK = 28

	Lowest price traded in the past 12 months, or 52 weeks

	
MARK = 29

	Mark-to-Market value is calculated daily using current prices to
determine profit/loss

Futures Options Quotes

Level one quotes for futures options.

	
StreamClient.level_one_futures_options_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640610]

Subscribe to level one futures options quote data.

	Parameters

	
	symbols – Futures options symbols to receive quotes for

	fields – Iterable of LevelOneFuturesOptionsFields
representing the fields to return in streaming entries.
If unset, all fields will be requested.

	
StreamClient.add_level_one_futures_options_handler(handler)

	Register a function to handle level one futures options quotes as they
are sent. See Handling Messages for details.

	
class StreamClient.LevelOneFuturesOptionsFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640609]

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
BID_PRICE = 1

	Current Best Bid Price

	
ASK_PRICE = 2

	Current Best Ask Price

	
LAST_PRICE = 3

	Price at which the last trade was matched

	
BID_SIZE = 4

	Number of shares for bid

	
ASK_SIZE = 5

	Number of shares for ask

	
ASK_ID = 6

	Exchange with the best ask

	
BID_ID = 7

	Exchange with the best bid

	
TOTAL_VOLUME = 8

	Aggregated shares traded throughout the day, including pre/post
market hours

	
LAST_SIZE = 9

	Number of shares traded with last trade

	
QUOTE_TIME = 10

	Trade time of the last quote in milliseconds since epoch

	
TRADE_TIME = 11

	Trade time of the last trade in milliseconds since epoch

	
HIGH_PRICE = 12

	Day’s high trade price

	
LOW_PRICE = 13

	Day’s low trade price

	
CLOSE_PRICE = 14

	Previous day’s closing price

	
EXCHANGE_ID = 15

	Primary “listing” Exchange. Notes:
* I → ICE
* E → CME
* L → LIFFEUS

	
DESCRIPTION = 16

	Description of the product

	
LAST_ID = 17

	Exchange where last trade was executed

	
OPEN_PRICE = 18

	Day’s Open Price

	
NET_CHANGE = 19

	Current Last-Prev Close

	
FUTURE_PERCENT_CHANGE = 20

	Current percent change

	
EXCHANGE_NAME = 21

	Name of exchange

	
SECURITY_STATUS = 22

	Trading status of the symbol. Indicates a symbols current trading
status, Normal, Halted, Closed.

	
OPEN_INTEREST = 23

	The total number of futures ontracts that are not closed or delivered
on a particular day

	
MARK = 24

	Mark-to-Market value is calculated daily using current prices to
determine profit/loss

	
TICK = 25

	Minimum price movement

	
TICK_AMOUNT = 26

	Minimum amount that the price of the market can change

	
PRODUCT = 27

	Futures product

	
FUTURE_PRICE_FORMAT = 28

	Display in fraction or decimal format

	
FUTURE_TRADING_HOURS = 29

	Trading hours

	
FUTURE_IS_TRADEABLE = 30

	Flag to indicate if this future contract is tradable

	
FUTURE_MULTIPLIER = 31

	Point value

	
FUTURE_IS_ACTIVE = 32

	Indicates if this contract is active

	
FUTURE_SETTLEMENT_PRICE = 33

	Closing price

	
FUTURE_ACTIVE_SYMBOL = 34

	Symbol of the active contract

	
FUTURE_EXPIRATION_DATE = 35

	Expiration date of this contract, in milliseconds since epoch

Level Two Order Book

Level two streams provide a view on continuous order books of various securities.
The level two order book describes the current bids and asks on the market, and
these streams provide snapshots of that state.

Due to the lack of official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640612], these streams are largely reverse
engineered. While the labeled data represents a best effort attempt to
interpret stream fields, it’s possible that something is wrong or incorrectly
labeled.

The documentation lists more book types than are implemented here. In
particular, it also lists FOREX_BOOK, FUTURES_BOOK, and
FUTURES_OPTIONS_BOOK as accessible streams. All experimentation has resulted
in these streams refusing to connect, typically returning errors about
unavailable services. Due to this behavior and the lack of official
documentation for book streams generally, tda-api assumes these streams are not
actually implemented, and so excludes them. If you have any insight into using
them, please
let us know [https://github.com/alexgolec/tda-api/issues].

Equities Order Books: NYSE and NASDAQ

tda-api supports level two data for NYSE and NASDAQ, which are the two major
exchanges dealing in equities, ETFs, etc. Stocks are typically listed on one or
the other, and it is useful to learn about the differences between them:

	“The NYSE and NASDAQ: How They Work” on Investopedia [https://www.investopedia.com/articles/basics/03/103103.asp]

	“Here’s the difference between the NASDAQ and NYSE” on Business Insider [https://www.businessinsider.com/heres-the-difference-between-the-nasdaq-and-nyse-2017-7]

	“Can Stocks Be Traded on More Than One Exchange?” on Investopedia [https://www.investopedia.com/ask/answers/05/stockmultipleexchanges.asp]

You can identify on which exchange a symbol is listed by using
Client.search_instruments():

r = c.search_instruments(['GOOG'], projection=c.Instrument.Projection.FUNDAMENTAL)
assert r.status_code == httpx.codes.OK, r.raise_for_status()
print(r.json()['GOOG']['exchange']) # Outputs NASDAQ

However, many symbols have order books available on these streams even though
this API call returns neither NYSE nor NASDAQ. The only sure-fire way to find out
whether the order book is available is to attempt to subscribe and see what
happens.

Note to preserve equivalence with what little documentation there is, the NYSE
book is called “listed.” Testing indicates this stream corresponds to the NYSE
book, but if you find any behavior that suggests otherwise please
let us know [https://github.com/alexgolec/tda-api/issues].

	
StreamClient.listed_book_subs(symbols)

	Subscribe to the NYSE level two order book. Note this stream has no
official documentation.

	
StreamClient.add_listed_book_handler(handler)

	Register a function to handle level two NYSE book data as it is updated
See Handling Messages for details.

	
StreamClient.nasdaq_book_subs(symbols)

	Subscribe to the NASDAQ level two order book. Note this stream has no
official documentation.

	
StreamClient.add_nasdaq_book_handler(handler)

	Register a function to handle level two NASDAQ book data as it is
updated See Handling Messages for details.

Options Order Book

This stream provides the order book for options. It’s not entirely clear what
exchange it aggregates from, but it’s been tested to work and deliver data. The
leading hypothesis is that it is bethe order book for the
Chicago Board of Exchange [https://www.cboe.com/us/options] options
exchanges, although this is an admittedly an uneducated guess.

	
StreamClient.options_book_subs(symbols)

	Subscribe to the level two order book for options. Note this stream has no
official documentation, and it’s not entirely clear what exchange it
corresponds to. Use at your own risk.

	
StreamClient.add_options_book_handler(handler)

	Register a function to handle level two options book data as it is
updated See Handling Messages for details.

Time of Sale

The data in Level Two Order Book describes the bids and asks for various
instruments, but by itself is insufficient to determine when trades actually
take place. The time of sale streams notify on trades as they happen. Together
with the level two data, they provide a fairly complete picture of what is
happening on an exchange.

All time of sale streams uss a common set of fields:

	
class StreamClient.TimesaleFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640626]

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
TRADE_TIME = 1

	Trade time of the last trade in milliseconds since epoch

	
LAST_PRICE = 2

	Price at which the last trade was matched

	
LAST_SIZE = 3

	Number of shares traded with last trade

	
LAST_SEQUENCE = 4

	Number of shares for bid

Equity Trades

	
StreamClient.timesale_equity_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640628]

Subscribe to time of sale notifications for equities.

	Parameters

	symbols – Equity symbols to subscribe to

	
StreamClient.add_timesale_equity_handler(handler)

	Register a function to handle equity trade notifications as they happen
See Handling Messages for details.

Futures Trades

	
StreamClient.timesale_futures_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640628]

Subscribe to time of sale notifications for futures.

	Parameters

	symbols – Futures symbols to subscribe to

	
StreamClient.add_timesale_futures_handler(handler)

	Register a function to handle futures trade notifications as they happen
See Handling Messages for details.

Options Trades

	
StreamClient.timesale_options_subs(symbols, *, fields=None)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640628]

Subscribe to time of sale notifications for options.

	Parameters

	symbols – Options symbols to subscribe to

	
StreamClient.add_timesale_options_handler(handler)

	Register a function to handle options trade notifications as they happen
See Handling Messages for details.

News Headlines

TD Ameritrade supposedly supports streaming news headlines. However, we have
yet to receive any reports of successful access to this stream. Attempts to read
this stream result in messages like the following, followed by TDA-initiated
stream closure:

{
 "notify": [
 {
 "service": "NEWS_HEADLINE",
 "timestamp": 1591500923797,
 "content": {
 "code": 17,
 "msg": "Not authorized for all quotes."
 }
 }
]
}

The current hypothesis is that this stream requires some permissions or paid
access that so far no one has had.If you manage to get this stream working, or
even if you manage to get it to fail with a different message than the one
above, please report it [https://github.com/alexgolec/tda-api/issues]. In
the meantime, tda-api provides the following methods for attempting to
access this stream.

	
StreamClient.news_headline_subs(symbols)

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640626]

Subscribe to news headlines related to the given symbols.

	
StreamClient.add_news_headline_handler(handler)

	Register a function to handle news headlines as they are provided. See
Handling Messages for details.

	
class StreamClient.NewsHeadlineFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640626]

	
SYMBOL = 0

	Ticker symbol in upper case. Represented in the stream as the
key field.

	
ERROR_CODE = 1

	Specifies if there is any error

	
STORY_DATETIME = 2

	Headline’s datetime in milliseconds since epoch

	
HEADLINE_ID = 3

	Unique ID for the headline

	
STATUS = 4

	

	
HEADLINE = 5

	News headline

	
STORY_ID = 6

	

	
COUNT_FOR_KEYWORD = 7

	

	
KEYWORD_ARRAY = 8

	

	
IS_HOT = 9

	

	
STORY_SOURCE = 10

	

Account Activity

This stream allows you to monitor your account activity, including order
execution/cancellation/expiration/etc. tda-api provide utilities for setting
up and reading the stream, but leaves the task of parsing the response XML
object [https://developer.tdameritrade.com/content/streaming-data#_Toc504640581]
to the user.

	
StreamClient.account_activity_sub()

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640580]

Subscribe to account activity for the account id associated with this
streaming client. See AccountActivityFields for more info.

	
StreamClient.add_account_activity_handler(handler)

	Adds a handler to the account activity subscription. See
Handling Messages for details.

	
class StreamClient.AccountActivityFields

	Official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640580]

Data fields for equity account activity. Primarily an implementation detail
and not used in client code. Provided here as documentation for key
values stored returned in the stream messages.

	
SUBSCRIPTION_KEY = 0

	Subscription key. Represented in the stream as the
key field.

	
ACCOUNT = 1

	Account # subscribed

	
MESSAGE_TYPE = 2

	Refer to the message type table in the official documentation [https://developer.tdameritrade.com/content/streaming-data#_Toc504640581]

	
MESSAGE_DATA = 3

	The core data for the message. Either XML Message data describing
the update, NULL in some cases, or plain text in case of
ERROR.

Troubleshooting

There are a number of issues you might encounter when using the streaming
client. This section attempts to provide a non-authoritative listing of the
issues you may encounter when using this client.

Unfortunately, use of the streaming client by non-TDAmeritrade apps is poorly
documented and apparently completely unsupported. This section attempts
to provide a non-authoritative listing of the issues you may encounter, but
please note that these are best effort explanations resulting from reverse
engineering and crowdsourced experience. Take them with a grain of salt.

If you have specific questions, please join our Discord server [https://discord.gg/nfrd9gh] to discuss with the community.

ConnectionClosedOK: code = 1000 (OK), no reason Immediately on Stream Start

There are a few known causes for this issue:

Streaming Account ID Doesn’t Match Token Account

TDA allows you to link multiple accounts together, so that logging in to one
main account allows you to have access to data from all other linked accounts.
This is not a problem for the HTTP client, but the streaming client is a little
more restrictive. In particular, it appears that opening a StreamClient with
an account ID that is different from the account ID corresponding to the username
that was used to create the token is disallowed.

If you’re encountering this issue, make sure you are using the account ID of the
account which was used during token login. If you’re unsure which account was
used to create the token, delete your token and create a new one, taking note of
the account ID.

Multiple Concurrent Streams

TDA allows only one open stream per account ID. If you open a second one, it
will immediately close itself with this error. This is not a limitation of
tda-api, this is a TDAmeritrade limitation. If you want to use multiple
streams, you need to have multiple accounts, create a separate token under each,
and pass each one’s account ID into its own client.

ConnectionClosedError: code = 1006 (connection closed abnormally [internal])

TDA has the right to kill the connection at any time for any reason, and this
error appears to be a catchall for these sorts of failures. If you are
encountering this error, it is almost certainly not the fault of the
tda-api library, but rather either an internal failure on TDA’s side or a
failure in the logic of your own code.

That being said, there have been a number of situations where this error was
encountered, and this section attempts to record the resolution of these
failures.

Your Handler is Too Slow

tda-api cannot perform websocket message acknowledgement when your handler
code is running. As a result, if your handler code takes longer than the stream
update frequency, a backlog of unacknowledged messages will develop. TDA has
been observed to terminate connections when many messages are unacknowledged.

Fixing this is a task for the application developer: if you are writing to a
database or filesystem as part of your handler, consider profiling it to make
the write faster. You may also consider deferring your writes so that slow
operations don’t happen in the hotpath of the message handler.

JSONDecodeError

This is an error that is most often raised when TDA sends an invalid JSON
string. See Custom JSON Decoding for details.

For reasons known only to TDAmeritrade’s development team, the API occasionally
emits invalid stream messages for some endpoints. Because this issue does not
affect all endpoints, and because tda-api’s authors are not in the business
of handling quirks of an API they don’t control, the library simply passes these
errors up to the user.

However, some applications cannot handle complete failure. What’s more, some
users have insight into how to work around these decoder errors. The streaming
client supports setting a custom JSON decoder to help with this:

	
StreamClient.set_json_decoder(json_decoder)

	Sets a custom JSON decoder.

	Parameters

	json_decoder – Custom JSON decoder to use for to decode all
incoming JSON strings. See
StreamJsonDecoder for details.

Users are free to implement their own JSON decoders by subclassing the following
abstract base class:

	
class tda.streaming.StreamJsonDecoder

	
	
decode_json_string(raw)

	Parse a JSON-formatted string into a proper object. Raises
JSONDecodeError on parse failure.

Users looking for an out-of-the-box solution can consider using the
community-maintained decoder described in Custom JSON Decoding. Note that
while this decoder is constantly improving, it is not guaranteed to solve
whatever JSON decoding errors your may be encountering.

Order Templates

tda-api strives to be easy to use. This means making it easy to do simple
things, while making it possible to do complicated things. Order construction is
a major challenge to this mission: both simple and complicated orders use the
same format, meaning simple orders require a surprising amount of sophistication
to place.

We get around this by providing templates that make it easy to place common
orders, while allowing advanced users to modify the orders returned from the
templates to create more complex ones. Very advanced users can even create their
own orders from scratch. This page describes the simple templates, while the
OrderBuilder Reference page documents the order builder in all its complexity.

Using These Templates

These templates serve two purposes. First, they are designed to choose defaults
so you can immediately place them. These defaults
are:

	All orders execute during the current normal trading session. If placed
outside of trading hours, the execute during the next normal trading session.

	Time-in-force is set to DAY.

	All other fields (such as requested destination, etc.) are left unset,
meaning they receive default treatment from TD Ameritrade. Note this
treatment depends on TDA’s implementation, and may change without warning.

Secondly, they serve as starting points for building more complex order types.
All templates return a pre-populated OrderBuilder object, meaning complex
functionality can be specified by modifying the returned object. For example,
here is how you would place an order to buy GOOG for no more than $1250 at
any time in the next six months:

from tda.orders.equities import equity_buy_limit
from tda.orders.common import Duration, Session

client = ... # See "Authentication and Client Creation"

client.place_order(
 1000, # account_id
 equity_buy_limit('GOOG', 1, 1250.0)
 .set_duration(Duration.GOOD_TILL_CANCEL)
 .set_session(Session.SEAMLESS)
 .build())

You can find a full reference for all supported fields in OrderBuilder Reference.

Equity Templates

Buy orders

	
tda.orders.equities.equity_buy_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for an equity
buy market order.

	
tda.orders.equities.equity_buy_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for an equity
buy limit order.

Sell orders

	
tda.orders.equities.equity_sell_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for an equity
sell market order.

	
tda.orders.equities.equity_sell_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for an equity
sell limit order.

Sell short orders

	
tda.orders.equities.equity_sell_short_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for an equity
short sell market order.

	
tda.orders.equities.equity_sell_short_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for an equity
short sell limit order.

Buy to cover orders

	
tda.orders.equities.equity_buy_to_cover_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for an equity
buy-to-cover market order.

	
tda.orders.equities.equity_buy_to_cover_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for an equity
buy-to-cover limit order.

Options Templates

TD Ameritrade supports over a dozen options strategies, each of which involve a
precise structure in the order builder. tda-api is slowly gaining support
for these strategies, and they are documented here as they become ready for use.
As time goes on, more templates will be added here.

In the meantime, you can construct all supported options orders using the
OrderBuilder, although you will have to construct them
yourself.

Note orders placed using these templates may be rejected, depending on the
user’s options trading authorization.

Building Options Symbols

All templates require option symbols, which are somewhat more involved than
equity symbols. They encode the underlying, the expiration date, option type
(put or call) and the strike price. They are especially tricky to extract
because both the TD Ameritrade UI and the thinkorswim UI don’t reveal the symbol
in the option chain view.

Real trading symbols can be found by requesting the Option Chain. They
can also be built using the OptionSymbol helper, which provides utilities
for creating options symbols. Note it only emits syntactically correct symbols
and does not validate whether the symbol actually represents a traded option:

from tda.order.options import OptionSymbol

symbol = OptionSymbol(
 'TSLA', datetime.date(year=2020, month=11, day=20), 'P', '1360').build()

	
class tda.orders.options.OptionSymbol(underlying_symbol, expiration_date, contract_type, strike_price_as_string)

	Construct an option symbol from its constituent parts. Options symbols
have the following format: [Underlying]_[Two digit month][Two digit
day][Two digit year]['P' or 'C'][Strike price]. Examples include:

	GOOG_012122P620: GOOG Jan 21 2022 620 Put

	TSLA_112020C1360: TSLA Nov 20 2020 1360 Call

	SPY_121622C335: SPY Dec 16 2022 335 Call

Note while each of the individual parts is validated by itself, the
option symbol itself may not represent a traded option:

	Some underlyings do not support options.

	Not all dates have valid option expiration dates.

	Not all strike prices are valid options strikes.

You can use get_option_chain() to obtain real
option symbols for an underlying, as well as extensive data in pricing,
bid/ask spread, volume, etc.

	Parameters

	
	underlying_symbol – Symbol of the underlying. Not validated.

	expiration_date – Expiration date. Accepts datetime.date,
datetime.datetime, or strings with the
format [Two digit month][Two digit day][Two
digit year].

	contract_type – P for put or C for call.

	strike_price_as_string – Strike price, represented by a string as
you would see at the end of a real option
symbol.

Single Options

Buy and sell single options.

	
tda.orders.options.option_buy_to_open_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for a
buy-to-open market order.

	
tda.orders.options.option_buy_to_open_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for a
buy-to-open limit order.

	
tda.orders.options.option_sell_to_open_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for a
sell-to-open market order.

	
tda.orders.options.option_sell_to_open_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for a
sell-to-open limit order.

	
tda.orders.options.option_buy_to_close_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for a
buy-to-close market order.

	
tda.orders.options.option_buy_to_close_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for a
buy-to-close limit order.

	
tda.orders.options.option_sell_to_close_market(symbol, quantity)

	Returns a pre-filled OrderBuilder for a
sell-to-close market order.

	
tda.orders.options.option_sell_to_close_limit(symbol, quantity, price)

	Returns a pre-filled OrderBuilder for a
sell-to-close limit order.

Vertical Spreads

Vertical spreads are a complex option strategy that provides both limited upside
and limited downside. They are constructed using by buying an option at one
strike while simultaneously selling another option with the same underlying and
expiration date, except with a different strike, and they can be constructed
using either puts or call. You can find more information about this strategy on
Investopedia [https://www.investopedia.com/articles/active-trading/032614/which-vertical-option-spread-should-you-use.asp]

tda-api provides utilities for opening and closing vertical spreads in
various ways. It follows the standard (bull/bear) (put/call) naming
convention, where the name specifies the market attitude and the option type
used in construction.

For consistency’s sake, the option with the smaller strike price is always
passed first, followed by the higher strike option. You can find the option
symbols by consulting the return value of the Option Chain client call.

Call Verticals

	
tda.orders.options.bull_call_vertical_open(long_call_symbol, short_call_symbol, quantity, net_debit)

	Returns a pre-filled OrderBuilder that opens a
bull call vertical position. See Vertical Spreads for details.

	
tda.orders.options.bull_call_vertical_close(long_call_symbol, short_call_symbol, quantity, net_credit)

	Returns a pre-filled OrderBuilder that closes a
bull call vertical position. See Vertical Spreads for details.

	
tda.orders.options.bear_call_vertical_open(short_call_symbol, long_call_symbol, quantity, net_credit)

	Returns a pre-filled OrderBuilder that opens a
bear call vertical position. See Vertical Spreads for details.

	
tda.orders.options.bear_call_vertical_close(short_call_symbol, long_call_symbol, quantity, net_debit)

	Returns a pre-filled OrderBuilder that closes a
bear call vertical position. See Vertical Spreads for details.

Put Verticals

	
tda.orders.options.bull_put_vertical_open(long_put_symbol, short_put_symbol, quantity, net_credit)

	Returns a pre-filled OrderBuilder that opens a
bull put vertical position. See Vertical Spreads for details.

	
tda.orders.options.bull_put_vertical_close(long_put_symbol, short_put_symbol, quantity, net_debit)

	Returns a pre-filled OrderBuilder that closes a
bull put vertical position. See Vertical Spreads for details.

	
tda.orders.options.bear_put_vertical_open(short_put_symbol, long_put_symbol, quantity, net_debit)

	Returns a pre-filled OrderBuilder that opens a
bear put vertical position. See Vertical Spreads for details.

	
tda.orders.options.bear_put_vertical_close(short_put_symbol, long_put_symbol, quantity, net_credit)

	Returns a pre-filled OrderBuilder that closes a
bear put vertical position. See Vertical Spreads for details.

Utility Methods

These methods return orders that represent complex multi-order strategies,
namely “one cancels other” and “first triggers second” strategies. Note they
expect all their parameters to be of type OrderBuilder. You can construct
these orders using the templates above or by
creating them from scratch.

Note that you do not construct composite orders by placing the constituent
orders and then passing the results to the utility methods:

order_one = c.place_order(config.account_id,
 option_buy_to_open_limit(trade_symbol, contracts, safety_ask)
 .set_duration(Duration.GOOD_TILL_CANCEL)
 .set_session(Session.NORMAL)
 .build())

order_two = c.place_order(config.account_id,
 option_sell_to_close_limit(trade_symbol, half, double)
 .set_duration(Duration.GOOD_TILL_CANCEL)
 .set_session(Session.NORMAL)
 .build())

THIS IS BAD, DO NOT DO THIS
exec_trade = c.place_order(config.account_id, first_triggers_second(order_one, order_two))

What’s happening here is both constituent orders are being executed, and then
place_order will fail. Creating an OrderBuilder defers their execution,
subject to your composite order rules.

Note: It appears that using these methods requires disabling Advanced
Features on your account. It is not entirely clear why this is the case, but
we’ve seen numerous reports of issues with OCO and trigger orders being resolved
by this method. You can disable advanced features by calling TDAmeritrade
support and requesting that they be turned off. If you need more help, we
recommend joining our discord [https://discord.gg/M3vjtHj] to ask the
community for help.

	
tda.orders.common.one_cancels_other(order1, order2)

	If one of the orders is executed, immediately cancel the other.

	
tda.orders.common.first_triggers_second(first_order, second_order)

	If first_order is executed, immediately place second_order.

What happened to EquityOrderBuilder?

Long-time users and new users following outdated tutorials may notice that
this documentation no longer mentions the EquityOrderBuilder class. This
class used to be used to create equities orders, and offered a subset of the
functionality offered by the OrderBuilder. This class
has been removed in favor of the order builder and the above templates.

OrderBuilder Reference

The Client.place_order() method expects
a rather complex JSON object that describes the desired order. TDA provides some
example order specs [https://developer.tdameritrade.com/content/place-order-samples] to
illustrate the process and provides a schema in the place order documentation [https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0], but beyond that we’re on our own. tda-api aims
to be useful to everyone, from users who want to easily place common equities
and options trades, to advanced users who want to place complex multi-leg,
multi-asset type trades.

For users interested in simple trades, tda-api supports pre-built
Order Templates that allow fast construction of many common trades.
Advanced users can modify these trades however they like, and can even build
trades from scratch.

This page describes the features of the complete order schema in all their
complexity. It is aimed at advanced users who want to create complex orders.
Less advanced users can use the order templates to
create orders. If they find themselves wanting to go beyond those templates,
they can return to this page to learn how.

Optional: Order Specification Introduction

Before we dive in to creating order specs, let’s briefly introduce their
structure. This section is optional, although users wanting to use more advanced
featured like stop prices and complex options orders will likely want to read it.

Here is an example of a spec that places a limit order to buy 13 shares of
MSFT for no more than $190. This is exactly the order that would be returned
by tda.orders.equities.equity_buy_limit():

{
 "session": "NORMAL",
 "duration": "DAY",
 "orderType": "LIMIT",
 "price": "190.90",
 "orderLegCollection": [
 {
 "instruction": "BUY",
 "instrument": {
 "assetType": "EQUITY",
 "symbol": "MSFT"
 },
 "quantity": 1
 }
],
 "orderStrategyType": "SINGLE"
}

Some key points are:

	The LIMIT order type notifies TD that you’d like to place a limit order.

	The order strategy type is SINGLE, meaning this order is not a composite
order.

	The order leg collection contains a single leg to purchase the equity.

	The price is specified outside the order leg. This may seem
counterintuitive, but it’s important when placing composite options orders.

If this seems like a lot of detail to specify a rather simple order, it is. The
thing about the order spec object is that it can express every order that can
be made through the TD Ameritrade API. For an advanced example, here is a order
spec for a standing order to enter a long position in GOOG at $1310 or less
that triggers a one-cancels-other order that exits the position if the price
rises to $1400 or falls below $1250:

{
 "session": "NORMAL",
 "duration": "GOOD_TILL_CANCEL",
 "orderType": "LIMIT",
 "price": "1310.00",
 "orderLegCollection": [
 {
 "instruction": "BUY",
 "instrument": {
 "assetType": "EQUITY",
 "symbol": "GOOG"
 },
 "quantity": 1
 }
],
 "orderStrategyType": "TRIGGER",
 "childOrderStrategies": [
 {
 "orderStrategyType": "OCO",
 "childOrderStrategies": [
 {
 "session": "NORMAL",
 "duration": "GOOD_TILL_CANCEL",
 "orderType": "LIMIT",
 "price": "1400.00",
 "orderLegCollection": [
 {
 "instruction": "SELL",
 "instrument": {
 "assetType": "EQUITY",
 "symbol": "GOOG"
 },
 "quantity": 1
 }
]
 },
 {
 "session": "NORMAL",
 "duration": "GOOD_TILL_CANCEL",
 "orderType": "STOP_LIMIT",
 "stopPrice": "1250.00",
 "orderLegCollection": [
 {
 "instruction": "SELL",
 "instrument": {
 "assetType": "EQUITY",
 "symbol": "GOOG"
 },
 "quantity": 1
 }
]
 }
]
 }
]
}

While this looks complex, it can be broken down into the same components as the
simpler buy order:

	This time, the LIMIT order type applies to the top-level order.

	The order strategy type is TRIGGER, which tells TD Ameritrade to hold off
placing the the second order until the first one completes.

	The order leg collection still contains a single leg, and the price is still
defined outside the order leg. This is typical for equities orders.

There are also a few things that aren’t there in the simple buy order:

	The childOrderStrategies contains the OCO order that is triggered
when the first LIMIT order is executed.

	If you look carefully, you’ll notice that the inner OCO is a
fully-featured suborder in itself.

This order is large and complex, and it takes a lot of reading to understand
what’s going on here. Fortunately for you, you don’t have to; tda-api cuts
down on this complexity by providing templates and helpers to make building
orders easy:

from tda.orders.common import OrderType
from tda.orders.generic import OrderBuilder

one_triggers_other(
 equity_buy_limit('GOOG', 1, 1310),
 one_cancels_other(
 equity_sell_limit('GOOG', 1, 1400),
 equity_sell_limit('GOOG', 1, 1240)
 .set_order_type(OrderType.STOP_LIMIT)
 .clear_price()
 .set_stop_price(1250)
)

You can find the full listing of order templates and utility functions
here.

Now that you have some background on how orders are structured, let’s dive into
the order builder itself.

Constructing OrderBuilder Objects from Historical Orders

TDAmeritrade supports a huge array of order specifications, including both
equity and option orders, stop, conditionals, etc. However, the exact format of
these orders is tricky: if you don’t specify the order exactly how TDA expects
it, you’ll either have your order rejected for no reason, or you’ll end up
placing a different order than you intended.

Meanwhile, thinkorswim and the TDAmeritrade web and app UIs let you easily place
these orders, just not in a programmatic way. tda-api helps bridge this gap
by allowing you to place a complex order through your preferred UI and then
producing code that would have generated this order using tda-api. This
process looks like this:

	Place an order using your favorite UI.

	Call the following script to generate code for the most recently-placed
order:

Notice we don't prefix this with "python" because this is a script that was
installed by pip when you installed tda-api
tda-orders-codegen.py --token_file <your token file path> --api_key <your API key>

	Copy-paste the resulting code and adapt it to your needs.

This script is installed by pip, and will only be accessible if you’ve added
pip’s executable locations to your $PATH. If you’re having a hard time, feel
free to ask for help on our Discord server [https://discord.gg/nfrd9gh].

OrderBuilder Reference

This section provides a detailed reference of the generic order builder. You can
use it to help build your own custom orders, or you can modify the pre-built
orders generated by tda-api’s order templates.

Unfortunately, this reference is largely reverse-engineered. It was initially
generated from the schema provided in the official API documents [https://developer.tdameritrade.com/account-access/apis/post/accounts/%7BaccountId%7D/orders-0], but many of the finer points, such as which fields
should be populated for which order types, etc. are best guesses. If you find
something is inaccurate or missing, please let us know [https://github.com/alexgolec/tda-api/issues].

That being said, experienced traders who understand how various order types and
complex strategies work should find this builder easy to use, at least for the
order types with which they are familiar. Here are some resources you can use to
learn more, courtesy of the Securites and Exchange Commission:

	Trading Basics: Understanding the Different Ways to Buy and Sell Stock [https://www.sec.gov/investor/alerts/trading101basics.pdf]

	Trade Execution: What Every Investor Should Know [https://www.sec.gov/reportspubs/investor-publications/investorpubstradexechtm.html]

	Investor Bulletin: An Introduction to Options [https://www.sec.gov/oiea/investor-alerts-bulletins/ib_introductionoptions.html]

You can also find TD Ameritrade’s official documentation on orders here [https://www.tdameritrade.com/retail-en_us/resources/pdf/SDPS819.pdf],
although it doesn’t actually cover all functionality that tda-api supports.

Order Types

Here are the order types that can be used:

	
class tda.orders.common.OrderType

	Type of equity or option order to place.

	
MARKET = 'MARKET'

	Execute the order immediately at the best-available price.
More Info [https://www.investopedia.com/terms/m/marketorder.asp].

	
LIMIT = 'LIMIT'

	Execute the order at your price or better.
More info [https://www.investopedia.com/terms/l/limitorder.asp].

	
STOP = 'STOP'

	Wait until the price reaches the stop price, and then immediately place a
market order.
More Info [https://www.investopedia.com/terms/l/limitorder.asp].

	
STOP_LIMIT = 'STOP_LIMIT'

	Wait until the price reaches the stop price, and then immediately place a
limit order at the specified price. More Info [https://www.investopedia.com/terms/s/stop-limitorder.asp].

	
TRAILING_STOP = 'TRAILING_STOP'

	Similar to STOP, except if the price moves in your favor, the stop
price is adjusted in that direction. Places a market order if the stop
condition is met.
More info [https://www.investopedia.com/terms/t/trailingstop.asp].

	
TRAILING_STOP_LIMIT = 'TRAILING_STOP_LIMIT'

	Similar to STOP_LIMIT, except if the price moves in your favor, the
stop price is adjusted in that direction. Places a limit order at the
specified price if the stop condition is met.
More info [https://www.investopedia.com/terms/t/trailingstop.asp].

	
MARKET_ON_CLOSE = 'MARKET_ON_CLOSE'

	Place the order at the closing price immediately upon market close.
More info [https://www.investopedia.com/terms/m/marketonclose.asp]

	
EXERCISE = 'EXERCISE'

	Exercise an option.

	
NET_DEBIT = 'NET_DEBIT'

	Place an order for an options spread resulting in a net debit.
More info [https://www.investopedia.com/ask/answers/042215/whats-difference-between-credit-spread-and-debt-spread.asp]

	
NET_CREDIT = 'NET_CREDIT'

	Place an order for an options spread resulting in a net credit.
More info [https://www.investopedia.com/ask/answers/042215/whats-difference-between-credit-spread-and-debt-spread.asp]

	
NET_ZERO = 'NET_ZERO'

	Place an order for an options spread resulting in neither a credit nor a
debit.
More info [https://www.investopedia.com/ask/answers/042215/whats-difference-between-credit-spread-and-debt-spread.asp]

	
OrderBuilder.set_order_type(order_type)

	Set the order type. See OrderType for
details.

	
OrderBuilder.clear_order_type()

	Clear the order type.

Session and Duration

Together, these fields control when the order will be placed and how long it
will remain active. Note tda-api’s templates place
orders that are active for the duration of the current normal trading session.
If you want to modify the default session and duration, you can use these
methods to do so.

	
class tda.orders.common.Session

	The market session during which the order trade should be executed.

	
NORMAL = 'NORMAL'

	Normal market hours, from 9:30am to 4:00pm Eastern.

	
AM = 'AM'

	Premarket session, from 8:00am to 9:30am Eastern.

	
PM = 'PM'

	After-market session, from 4:00pm to 8:00pm Eastern.

	
SEAMLESS = 'SEAMLESS'

	Orders are active during all trading sessions except the overnight
session. This is the union of NORMAL, AM, and PM.

	
class tda.orders.common.Duration

	Length of time over which the trade will be active.

	
DAY = 'DAY'

	Cancel the trade at the end of the trading day. Note if the order cannot
be filled all at once, you may see partial executions throughout the day.

	
GOOD_TILL_CANCEL = 'GOOD_TILL_CANCEL'

	Keep the trade open for six months, or until the end of the cancel date,
whichever is shorter. Note if the order cannot be filled all at once, you
may see partial executions over the lifetime of the order.

	
FILL_OR_KILL = 'FILL_OR_KILL'

	Either execute the order immediately at the specified price, or cancel it
immediately.

	
OrderBuilder.set_duration(duration)

	Set the order duration. See Duration for
details.

	
OrderBuilder.clear_duration()

	Clear the order duration.

	
OrderBuilder.set_session(session)

	Set the order session. See Session for
details.

	
OrderBuilder.clear_session()

	Clear the order session.

Price

Price is the amount you’d like to pay for each unit of the position you’re
taking:

	For equities and simple options limit orders, this is the price which you’d
like to pay/receive.

	For complex options limit orders (net debit/net credit), this is the total
credit or debit you’d like to receive.

In other words, the price is the sum of the prices of the Order Legs.
This is particularly powerful for complex multi-leg options orders, which
support complex top and/or limit orders that trigger when the price of a
position reaches certain levels. In those cases, the price of an order can drop
below the specified price as a result of movements in multiple legs of the
trade.

Note on Truncation

Important Note: Under the hood, the TDAmeritrade API expects price as a
string, whereas tda-api allows setting prices as a floating point number for
convenience. The passed value is then converted to a string under the hood,
which involves some truncation logic:

	If the price has absolute value less than one, truncate (not round!) to
four decimal places. For example, 0.186992 will become 0.1869.

	For all other values, truncate to two decimal places. The above example would
become 0.18.

This behavior is meant as a sane heuristic, and there are almost certainly
situations where it is not the correct thing to do. You can sidestep this entire
process by passing your price as a string, although be forewarned that
TDAmeritrade may reject your order or even interpret it in unexpected ways.

	
OrderBuilder.set_price(price)

	Set the order price. Note price can be passed as either a float or an
str. See Note on Truncation.

	
OrderBuilder.copy_price(price)

	Directly set the stop price, avoiding all the validation and truncation
logic from set_price().

	
OrderBuilder.clear_price()

	Clear the order price

Order Legs

Order legs are where the actual assets being bought or sold are specified. For
simple equity or single-options orders, there is just one leg. However, for
complex multi-leg options trades, there can be more than one leg.

Note that order legs often do not execute all at once. Order legs can be
executed over the specified Duration of the order.
What’s more, if order legs request a large number of shares, legs themselves can
be partially filled. You can control this setting using the
SpecialInstruction value ALL_OR_NONE.

With all that out of the way, order legs are relatively simple to specify.
tda-api currently supports equity and option order legs:

	
OrderBuilder.add_equity_leg(instruction, symbol, quantity)

	Add an equity order leg.

	Parameters

	
	instruction – Instruction for the leg. See
EquityInstruction for
valid options.

	symbol – Equity symbol

	quantity – Number of shares for the order

	
class tda.orders.common.EquityInstruction

	Instructions for opening and closing equity positions.

	
BUY = 'BUY'

	Open a long equity position

	
SELL = 'SELL'

	Close a long equity position

	
SELL_SHORT = 'SELL_SHORT'

	Open a short equity position

	
BUY_TO_COVER = 'BUY_TO_COVER'

	Close a short equity position

	
OrderBuilder.add_option_leg(instruction, symbol, quantity)

	Add an option order leg.

	Parameters

	
	instruction – Instruction for the leg. See
OptionInstruction for
valid options.

	symbol – Option symbol

	quantity – Number of contracts for the order

	
class tda.orders.common.OptionInstruction

	Instructions for opening and closing options positions.

	
BUY_TO_OPEN = 'BUY_TO_OPEN'

	Enter a new long option position

	
SELL_TO_CLOSE = 'SELL_TO_CLOSE'

	Exit an existing long option position

	
SELL_TO_OPEN = 'SELL_TO_OPEN'

	Enter a short position in an option

	
BUY_TO_CLOSE = 'BUY_TO_CLOSE'

	Exit an existing short position in an option

	
OrderBuilder.clear_order_legs()

	Clear all order legs.

Requested Destination

By default, TD Ameritrade sends trades to whichever exchange provides the best
price. This field allows you to request a destination exchange for your trade,
although whether your order is actually executed there is up to TDA.

	
class tda.orders.common.Destination

	Destinations for when you want to request a specific destination for your
order.

	
INET = 'INET'

	

	
ECN_ARCA = 'ECN_ARCA'

	

	
CBOE = 'CBOE'

	

	
AMEX = 'AMEX'

	

	
PHLX = 'PHLX'

	

	
ISE = 'ISE'

	

	
BOX = 'BOX'

	

	
NYSE = 'NYSE'

	

	
NASDAQ = 'NASDAQ'

	

	
BATS = 'BATS'

	

	
C2 = 'C2'

	

	
AUTO = 'AUTO'

	

	
OrderBuilder.set_requested_destination(requested_destination)

	Set the requested destination. See
Destination for details.

	
OrderBuilder.clear_requested_destination()

	Clear the requested destination.

Special Instructions

Trades can contain special instructions which handle some edge cases:

	
class tda.orders.common.SpecialInstruction

	Special instruction for trades.

	
ALL_OR_NONE = 'ALL_OR_NONE'

	Disallow partial order execution.
More info [https://www.investopedia.com/terms/a/aon.asp].

	
DO_NOT_REDUCE = 'DO_NOT_REDUCE'

	Do not reduce order size in response to cash dividends.
More info [https://www.investopedia.com/terms/d/dnr.asp].

	
ALL_OR_NONE_DO_NOT_REDUCE = 'ALL_OR_NONE_DO_NOT_REDUCE'

	Combination of ALL_OR_NONE and DO_NOT_REDUCE.

	
OrderBuilder.set_special_instruction(special_instruction)

	Set the special instruction. See
SpecialInstruction for details.

	
OrderBuilder.clear_special_instruction()

	Clear the special instruction.

Complex Options Strategies

TD Ameritrade supports a number of complex options strategies. These strategies
are complex affairs, with each leg of the trade specified in the order legs. TD
performs additional validation on these strategies, so they are somewhat
complicated to place. However, the benefit is more flexibility, as trades like
trailing stop orders based on net debit/credit can be specified.

Unfortunately, due to the complexity of these orders and the lack of any real
documentation, we cannot offer definitively say how to structure these orders. A
few things have been observed, however:

	The legs of the order can be placed by adding them as option order legs using
add_option_leg().

	For spreads resulting in a new debit/credit, the price represents the overall
debit or credit desired.

If you successfully use these strategies, we want to know about it. Please let
us know by joining our Discord server [https://discord.gg/nfrd9gh] to chat
about it, or by creating a feature request [https://github.com/alexgolec/tda-api/issues].

	
class tda.orders.common.ComplexOrderStrategyType

	Explicit order strategies for executing multi-leg options orders.

	
NONE = 'NONE'

	No complex order strategy. This is the default.

	
COVERED = 'COVERED'

	Covered call [https://tickertape.tdameritrade.com/trading/selling-covered-call-options-strategy-income-hedging-15135]

	
VERTICAL = 'VERTICAL'

	Vertical spread [https://tickertape.tdameritrade.com/trading/vertical-credit-spreads-high-probability-15846]

	
BACK_RATIO = 'BACK_RATIO'

	Ratio backspread [https://tickertape.tdameritrade.com/trading/pricey-stocks-ratio-spreads-15306]

	
CALENDAR = 'CALENDAR'

	Calendar spread [https://tickertape.tdameritrade.com/trading/calendar-spreads-trading-primer-15095]

	
DIAGONAL = 'DIAGONAL'

	Diagonal spread [https://tickertape.tdameritrade.com/trading/love-your-diagonal-spread-15030]

	
STRADDLE = 'STRADDLE'

	Straddle spread [https://tickertape.tdameritrade.com/trading/straddle-strangle-option-volatility-16208]

	
STRANGLE = 'STRANGLE'

	Strandle spread [https://tickertape.tdameritrade.com/trading/straddle-strangle-option-volatility-16208]

	
COLLAR_SYNTHETIC = 'COLLAR_SYNTHETIC'

	

	
BUTTERFLY = 'BUTTERFLY'

	Butterfly spread [https://tickertape.tdameritrade.com/trading/butterfly-spread-options-15976]

	
CONDOR = 'CONDOR'

	Condor spread [https://www.investopedia.com/terms/c/condorspread.asp]

	
IRON_CONDOR = 'IRON_CONDOR'

	Iron condor spread [https://tickertape.tdameritrade.com/trading/iron-condor-options-spread-your-trading-wings-15948]

	
VERTICAL_ROLL = 'VERTICAL_ROLL'

	Roll a vertical spread [https://tickertape.tdameritrade.com/trading/exit-winning-losing-trades-16685]

	
COLLAR_WITH_STOCK = 'COLLAR_WITH_STOCK'

	Collar strategy [https://tickertape.tdameritrade.com/trading/stock-hedge-options-collars-15529]

	
DOUBLE_DIAGONAL = 'DOUBLE_DIAGONAL'

	Double diagonal spread [https://optionstradingiq.com/the-ultimate-guide-to-double-diagonal-spreads/]

	
UNBALANCED_BUTTERFLY = 'UNBALANCED_BUTTERFLY'

	Unbalanced butterfy spread [https://tickertape.tdameritrade.com/trading/unbalanced-butterfly-strong-directional-bias-15913]

	
UNBALANCED_CONDOR = 'UNBALANCED_CONDOR'

	

	
UNBALANCED_IRON_CONDOR = 'UNBALANCED_IRON_CONDOR'

	

	
UNBALANCED_VERTICAL_ROLL = 'UNBALANCED_VERTICAL_ROLL'

	

	
CUSTOM = 'CUSTOM'

	A custom multi-leg order strategy.

	
OrderBuilder.set_complex_order_strategy_type(complex_order_strategy_type)

	Set the complex order strategy type. See
ComplexOrderStrategyType for details.

	
OrderBuilder.clear_complex_order_strategy_type()

	Clear the complex order strategy type.

Composite Orders

tda-api supports composite order strategies, in which execution of one order
has an effect on another:

	OCO, or “one cancels other” orders, consist of a pair of orders where
execution of one immediately cancels the other.

	TRIGGER orders consist of a pair of orders where execution of one
immediately results in placement of the other.

tda-api provides helpers to specify these easily:
one_cancels_other() and
first_triggers_second(). This is almost certainly
easier than specifying these orders manually. However, if you still want to
create them yourself, you can specify these composite order strategies like so:

	
class tda.orders.common.OrderStrategyType

	Rules for composite orders.

	
SINGLE = 'SINGLE'

	No chaining, only a single order is submitted

	
OCO = 'OCO'

	Execution of one order cancels the other

	
TRIGGER = 'TRIGGER'

	Execution of one order triggers placement of the other

	
OrderBuilder.set_order_strategy_type(order_strategy_type)

	Set the order strategy type. See
OrderStrategyType for more details.

	
OrderBuilder.clear_order_strategy_type()

	Clear the order strategy type.

Undocumented Fields

Unfortunately, your humble author is not an expert in all things trading. The
order spec schema describes some things that are outside my ability to document,
so rather than make stuff up, I’m putting them here in the hopes that someone
will come along and shed some light on them. You can make suggestions by filing
an issue on our
GitHub issues page [https://github.com/alexgolec/tda-api/issues],
or by joining our Discord server [https://discord.gg/M3vjtHj].

Quantity

This one seems obvious: doesn’t the quantity mean the number of stock I want to
buy? The trouble is that the order legs also have a quantity field, which
suggests this field means something else. The leading hypothesis is that is
outlines the number of copies of the order to place, although we have yet to
verify that.

	
OrderBuilder.set_quantity(quantity)

	Exact semantics unknown. See Quantity for a
discussion.

	
OrderBuilder.clear_quantity()

	Clear the order-level quantity. Note this does not affect order legs.

Stop Order Configuration

Stop orders and their variants (stop limit, trailing stop, trailing stop limit)
support some rather complex configuration. Both stops prices and the limit
prices of the resulting order can be configured to follow the market in a
dynamic fashion. The market dimensions that they follow can also be configured
differently, and it appears that which dimensions are supported varies by order
type.

We have unfortunately not yet done a thorough analysis of what’s supported, nor
have we made the effort to make it simple and easy. While we’re pretty sure we
understand how these fields work, they’ve been temporarily placed into the
“undocumented” section, pending a followup. Users are invited to experiment with
these fields at their own risk.

	
OrderBuilder.set_stop_price(stop_price)

	Set the stop price. Note price can be passed as either a float or an
str. See Note on Truncation.

	
OrderBuilder.copy_stop_price(stop_price)

	Directly set the stop price, avoiding all the validation and truncation
logic from set_stop_price().

	
OrderBuilder.clear_stop_price()

	Clear the stop price.

	
class tda.orders.common.StopPriceLinkBasis

	An enumeration.

	
MANUAL = 'MANUAL'

	

	
BASE = 'BASE'

	

	
TRIGGER = 'TRIGGER'

	

	
LAST = 'LAST'

	

	
BID = 'BID'

	

	
ASK = 'ASK'

	

	
ASK_BID = 'ASK_BID'

	

	
MARK = 'MARK'

	

	
AVERAGE = 'AVERAGE'

	

	
OrderBuilder.set_stop_price_link_basis(stop_price_link_basis)

	Set the stop price link basis. See
StopPriceLinkBasis for details.

	
OrderBuilder.clear_stop_price_link_basis()

	Clear the stop price link basis.

	
class tda.orders.common.StopPriceLinkType

	An enumeration.

	
VALUE = 'VALUE'

	

	
PERCENT = 'PERCENT'

	

	
TICK = 'TICK'

	

	
OrderBuilder.set_stop_price_link_type(stop_price_link_type)

	Set the stop price link type. See
StopPriceLinkType for details.

	
OrderBuilder.clear_stop_price_link_type()

	Clear the stop price link type.

	
OrderBuilder.set_stop_price_offset(stop_price_offset)

	Set the stop price offset.

	
OrderBuilder.clear_stop_price_offset()

	Clear the stop price offset.

	
class tda.orders.common.StopType

	An enumeration.

	
STANDARD = 'STANDARD'

	

	
BID = 'BID'

	

	
ASK = 'ASK'

	

	
LAST = 'LAST'

	

	
MARK = 'MARK'

	

	
OrderBuilder.set_stop_type(stop_type)

	Set the stop type. See
StopType for more details.

	
OrderBuilder.clear_stop_type()

	Clear the stop type.

	
class tda.orders.common.PriceLinkBasis

	An enumeration.

	
MANUAL = 'MANUAL'

	

	
BASE = 'BASE'

	

	
TRIGGER = 'TRIGGER'

	

	
LAST = 'LAST'

	

	
BID = 'BID'

	

	
ASK = 'ASK'

	

	
ASK_BID = 'ASK_BID'

	

	
MARK = 'MARK'

	

	
AVERAGE = 'AVERAGE'

	

	
OrderBuilder.set_price_link_basis(price_link_basis)

	Set the price link basis. See
PriceLinkBasis for details.

	
OrderBuilder.clear_price_link_basis()

	Clear the price link basis.

	
class tda.orders.common.PriceLinkType

	An enumeration.

	
VALUE = 'VALUE'

	

	
PERCENT = 'PERCENT'

	

	
TICK = 'TICK'

	

	
OrderBuilder.set_price_link_type(price_link_type)

	Set the price link type. See
PriceLinkType for more details.

	
OrderBuilder.clear_price_link_type()

	Clear the price link basis.

	
OrderBuilder.set_activation_price(activation_price)

	Set the activation price.

	
OrderBuilder.clear_activation_price()

	Clear the activation price.

Utilities

This section describes miscellaneous utility methods provided by tda-api.
All utilities are presented under the Utils class:

	
class tda.utils.Utils(client, account_id)

	Helper for placing orders on equities. Provides easy-to-use
implementations for common tasks such as market and limit orders.

	
__init__(client, account_id)

	Creates a new Utils instance. For convenience, this object
assumes the user wants to work with a single account ID at a time.

	
set_account_id(account_id)

	Set the account ID used by this Utils instance.

Get the Most Recent Order

For successfully placed orders, tda.client.Client.place_order() returns
the ID of the newly created order, encoded in the r.headers['Location']
header. This method inspects the response and extracts the order ID from the
contents, if it’s there. This order ID can then be used to monitor or modify the
order as described in the Client documentation. Example
usage:

Assume client and order already exist and are valid
account_id = 123456
r = client.place_order(account_id, order)
assert r.status_code == httpx.codes.OK, r.raise_for_status()
order_id = Utils(client, account_id).extract_order_id(r)
assert order_id is not None

	
Utils.extract_order_id(place_order_response)

	Attempts to extract the order ID from a response object returned by
Client.place_order(). Return
None if the order location is not contained in the response.

	Parameters

	place_order_response – Order response as returned by
Client.place_order(). Note this
method requires that the order was
successful.

	Raises

	ValueError – if the order was not succesful or if the order’s
account ID is not equal to the account ID set in this
Utils object.

Example Application

To illustrate some of the functionality of tda-api, here is an example
application that finds stocks that pay a dividend during the month of your
birthday and purchases one of each.

import atexit
import datetime
import dateutil
import httpx
import sys
import tda

API_KEY = 'XXXXXX@AMER.OAUTHAP'
REDIRECT_URI = 'https://localhost:8080/'
TOKEN_PATH = 'ameritrade-credentials.json'
YOUR_BIRTHDAY = datetime.datetime(year=1969, month=4, day=20)
SP500_URL = "https://tda-api.readthedocs.io/en/latest/_static/sp500.txt"

def make_webdriver():
 # Import selenium here because it's slow to import
 from selenium import webdriver

 driver = webdriver.Chrome()
 atexit.register(lambda: driver.quit())
 return driver

Create a new client
client = tda.auth.easy_client(
 API_KEY,
 REDIRECT_URI,
 TOKEN_PATH,
 make_webdriver)

Load S&P 500 composition from documentation
sp500 = httpx.get(
 SP500_URL, headers={
 "User-Agent": "Mozilla/5.0"}).read().decode().split()

Fetch fundamentals for all symbols and filter out the ones with ex-dividend
dates in the future and dividend payment dates on your birth month. Note we
perform the fetch in two calls because the API places an upper limit on the
number of symbols you can fetch at once.
today = datetime.datetime.today()
birth_month_dividends = []
for s in (sp500[:250], sp500[250:]):
 r = client.search_instruments(
 s, tda.client.Client.Instrument.Projection.FUNDAMENTAL)
 assert r.status_code == httpx.codes.OK, r.raise_for_status()

 for symbol, f in r.json().items():

 # Parse ex-dividend date
 ex_div_string = f['fundamental']['dividendDate']
 if not ex_div_string.strip():
 continue
 ex_dividend_date = dateutil.parser.parse(ex_div_string)

 # Parse payment date
 pay_date_string = f['fundamental']['dividendPayDate']
 if not pay_date_string.strip():
 continue
 pay_date = dateutil.parser.parse(pay_date_string)

 # Check dates
 if (ex_dividend_date > today
 and pay_date.month == YOUR_BIRTHDAY.month):
 birth_month_dividends.append(symbol)

if not birth_month_dividends:
 print('Sorry, no stocks are paying out in your birth month yet. This is ',
 'most likely because the dividends haven\'t been announced yet. ',
 'Try again closer to your birthday.')
 sys.exit(1)

Purchase one share of each the stocks that pay in your birthday month.
account_id = int(input(
 'Input your TDA account number to place orders (<Ctrl-C> to quit): '))
for symbol in birth_month_dividends:
 print('Buying one share of', symbol)

 # Build the order spec and place the order
 order = tda.orders.equities.equity_buy_market(symbol, 1)

 r = client.place_order(account_id, order)
 assert r.status_code == httpx.codes.OK, r.raise_for_status()

Getting Help

Even the most experienced developer needs help on occasion. This page describes
how you can get help and make progress.

Asking for Help on Discord

tda-api has a vibrant community that hangs out in our discord server [https://discord.gg/M3vjtHj]. If you’re having any sort of trouble, this
server should be your first stop. Just make sure you follow a few rules to ask
for help.

Provide Adequate Information

Nothing makes it easier to help you than information. The more information
you provide, the easier it’ll be to help you. If you are asking for advice on
how to do something, share whatever code you’ve written or research you’ve
performed. If you’re asking for help about an error, make sure you provide at
least the following information:

	Your OS (Windows? Mac OS? Linux?) and execution environment (VSCode? A raw
terminal? A docker container in the cloud?)

	Your tda-api version. You can see this by executing
print(tda.__version__) in a python shell.

	The full stack trace and error message. Descriptions of errors will be met
with requests to provide more information.

	Code that reproduces the error. If you’re shy about your code, write a small
script that reproduces the error when run.

Optionally, you may want to share diagnostic logs generated by tda-api. Not
only does this provide even more information to the community, reading through
the logs might also help you solve the problem yourself. You can read about
enabling logging here.

Format Your Request Properly

Take advantage of Discord’s wonderful support for code blocks [https://support.discord.com/hc/en-us/articles/210298617-Markdown-Text-101-Chat-Formatting-Bold-Italic-Underline-]
and format your error, stack traces, and code using triple backticks. To do
this, put ``` before and after your message. Failing to do this will be met
with a request to edit your message to be better formatted.

Reporting a Bug

tda-api is not perfect. Features are missing, documentation may be out of
date, and it almost certainly contains bugs. If you think of a way in which
tda-api can be improved, we’re more than happy to hear it.

This section outlines the process for getting help if you found a bug. If you need
general help using tda-api, or just want to chat with other people
interested in developing trading strategies, you can
join our discord [https://discord.gg/M3vjtHj].

If you still want to submit an issue, we ask that you follow a few guidelines to
make everyone’s lives easier:

Enable Logging

Behind the scenes, tda-api performs diagnostic logging of its activity using
Python’s logging [https://docs.python.org/3/library/logging.html] module.
You can enable this debug information by telling the root logger to print these
messages:

import logging
logging.getLogger('').addHandler(logging.StreamHandler())

Sometimes, this additional logging is enough to help you debug. Before you ask
for help, carefully read through your logs to see if there’s anything there that
helps you.

Gather Logs For Your Bug Report

If you still can’t figure out what’s going wrong, tda-api has special
functionality for gathering and preparing logs for filing issues. It works by
capturing tda-api’s logs, anonymizing them, and then dumping them to the
console when the program exits. You can enable this by calling this method
before doing anything else in your application:

tda.debug.enable_bug_report_logging()

This method will redact the logs to scrub them of common secrets, like account
IDs, tokens, access keys, etc. However, this redaction is not guaranteed to be
perfect, and it is your responsibility to make sure they are clean before you
ask for help.

When filing a issue, please upload the logs along with your description. If
you do not include logs with your issue, your issue may be closed.

For completeness, here is this method’s documentation:

	
debug.enable_bug_report_logging()

	Turns on bug report logging. Will collect all logged output, redact out
anything that should be kept secret, and emit the result at program exit.

	Notes:

	
	This method does a best effort redaction. Never share its output
without verifying that all secret information is properly redacted.

	Because this function records all logged output, it has a performance
penalty. It should not be called in production code.

Submit Your Ticket

You are now ready to write your bug. Before you do, be warned that your issue
may be be closed if:

	It does not include code. The first thing we do when we receive your issue is
we try to reproduce your failure. We can’t do that if you don’t show us your
code.

	It does not include logs. It’s very difficult to debug problems without logs.

	Logs are not adequately redacted. This is for your own protection.

	Logs are copy-pasted into the issue message field. Please write them to a
file and attach them to your issue.

	You do not follow the issue template. We’re not super strict about this
one, but you should at least include all the information it asks for.

You can file an issue on our GitHub page [https://github.com/alexgolec/tda-api/issues].

Community-Contributed Functionality

When maintaining tda-api, the authors have two goals: make common things
easy, and make uncommon things possible. This meets the needs of vast majority
of the community, while allowing advanced users or those with very niche
requirements to progress using potentially custom approaches.

However, this philosophy explicitly excludes functionality that is potentially
useful to many users, but is either not directly related to the core
functionality of the API wrapper. This is where the contrib module comes
into play.

This module is a collection of high-quality code that was produced by the
community and for the community. It includes utility methods that provide
additional functionality beyond the core library, fixes for quirks in API
behavior, etc. This page lists the available functionality. If you’d like to
discuss this or propose/request new additions, please join our Discord server [https://discord.gg/Ddha8cm6dx].

Custom JSON Decoding

TDA’s API occasionally emits invalid JSON in the stream. This class implements
all known workarounds and hacks to get around these quirks:

	
class tda.contrib.util.HeuristicJsonDecoder

	
	
decode_json_string(raw)

	Attempts the following, in order:

	Return the JSON decoding of the raw string.

	Replace all instances of \\\\ with \\ and return the
decoding.

Note alternative (and potentially expensive) transformations are only
performed when JSONDecodeError exceptions are raised by earlier
stages.

You can use it as follows:

from tda.contrib.util import HeuristicJsonDecoder

stream_client = # ... create your stream
stream_client.set_json_decoder(HeuristicJsonDecoder())
... continue as normal

If you encounter invalid stream items that are not fixed by using this decoder,
please let us know in our Discord server [https://discord.gg/Ddha8cm6dx] or
follow the guide in Contributing to tda-api to add new functionality.

Contributing to tda-api

Fixing a bug? Adding a feature? Just cleaning up for the sake of cleaning up?
Great! No improvement is too small for me, and I’m always happy to take pull
requests. Read this guide to learn how to set up your environment so you can
contribute.

Setting up the Dev Environment

Dependencies are listed in the requirements.txt file. These development
requirements are distinct from the requirements listed in setup.py and include
some additional packages around testing, documentation generation, etc.

Before you install anything, I highly recommend setting up a virtualenv so you
don’t pollute your system installation directories:

pip install virtualenv
virtualenv -v virtualenv
source virtualenv/bin/activate

Next, install project requirements:

pip install -r requirements.txt

Finally, verify everything works by running tests:

make test

At this point you can make your changes.

Note that if you are using a virtual environment and switch to a new terminal
your virtual environment will not be active in the new terminal,
and you need to run the activate command again.
If you want to disable the loaded virtual environment in the same terminal window,
use the command:

deactivate

Development Guidelines

Test your changes

This project aims for high test coverage. All changes must be properly tested,
and we will accept no PRs that lack appropriate unit testing. We also expect
existing tests to pass. You can run your tests using:

make test

Document your code

Documentation is how users learn to use your code, and no feature is complete
without a full description of how to use it. If your PR changes external-facing
interfaces, or if it alters semantics, the changes must be thoroughly described
in the docstrings of the affected components. If your change adds a substantial
new module, a new section in the documentation may be justified.

Documentation is built using Sphinx [https://www.sphinx-doc.org/en/master/].
You can build the documentation using the Makefile.sphinx makefile. For
example you can build the HTML documentation like so:

make -f Makefile.sphinx

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tda	

 	
 	
 tda.auth	

 	
 	
 tda.client	

 	
 	
 tda.debug	

 	
 	
 tda.orders	

 	
 	
 tda.orders.generic	

 	
 	
 tda.streaming	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__init__() (tda.client.Client method)

 	(tda.utils.Utils method)

A

 	
 	ACCEPTED (tda.client.Client.Order.Status attribute)

 	Account (class in tda.client.Client)

 	ACCOUNT (tda.streaming.StreamClient.AccountActivityFields attribute)

 	Account.Fields (class in tda.client.Client)

 	account_activity_sub() (tda.streaming.StreamClient method)

 	add_account_activity_handler() (tda.streaming.StreamClient method)

 	add_chart_equity_handler() (tda.streaming.StreamClient method)

 	add_chart_futures_handler() (tda.streaming.StreamClient method)

 	add_equity_leg() (tda.orders.generic.OrderBuilder method)

 	add_level_one_equity_handler() (tda.streaming.StreamClient method)

 	add_level_one_forex_handler() (tda.streaming.StreamClient method)

 	add_level_one_futures_handler() (tda.streaming.StreamClient method)

 	add_level_one_futures_options_handler() (tda.streaming.StreamClient method)

 	add_level_one_option_handler() (tda.streaming.StreamClient method)

 	add_listed_book_handler() (tda.streaming.StreamClient method)

 	add_nasdaq_book_handler() (tda.streaming.StreamClient method)

 	add_news_headline_handler() (tda.streaming.StreamClient method)

 	add_option_leg() (tda.orders.generic.OrderBuilder method)

 	add_options_book_handler() (tda.streaming.StreamClient method)

 	add_timesale_equity_handler() (tda.streaming.StreamClient method)

 	add_timesale_futures_handler() (tda.streaming.StreamClient method)

 	add_timesale_options_handler() (tda.streaming.StreamClient method)

 	ADVISORY_FEES (tda.client.Client.Transactions.TransactionType attribute)

 	ALL (tda.client.Client.Options.ContractType attribute)

 	(tda.client.Client.Options.StrikeRange attribute)

 	(tda.client.Client.Options.Type attribute)

 	(tda.client.Client.Transactions.TransactionType attribute)

 	ALL_OR_NONE (tda.orders.common.SpecialInstruction attribute)

 	ALL_OR_NONE_DO_NOT_REDUCE (tda.orders.common.SpecialInstruction attribute)

 	
 	AM (tda.orders.common.Session attribute)

 	AMEX (tda.orders.common.Destination attribute)

 	ANALYTICAL (tda.client.Client.Options.Strategy attribute)

 	APRIL (tda.client.Client.Options.ExpirationMonth attribute)

 	ASK (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	(tda.orders.common.StopType attribute)

 	ASK_BID (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	ASK_ID (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	ASK_PRICE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	ASK_SIZE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	AUGUST (tda.client.Client.Options.ExpirationMonth attribute)

 	AUTO (tda.orders.common.Destination attribute)

 	AVERAGE (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	AWAITING_CONDITION (tda.client.Client.Order.Status attribute)

 	AWAITING_MANUAL_REVIEW (tda.client.Client.Order.Status attribute)

 	AWAITING_PARENT_ORDER (tda.client.Client.Order.Status attribute)

 	AWAITING_UR_OUR (tda.client.Client.Order.Status attribute)

B

 	
 	BACK_RATIO (tda.orders.common.ComplexOrderStrategyType attribute)

 	BASE (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	BATS (tda.orders.common.Destination attribute)

 	bear_call_vertical_close() (in module tda.orders.options)

 	bear_call_vertical_open() (in module tda.orders.options)

 	bear_put_vertical_close() (in module tda.orders.options)

 	bear_put_vertical_open() (in module tda.orders.options)

 	BID (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	(tda.orders.common.StopType attribute)

 	BID_ID (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	BID_PRICE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	
 	BID_SIZE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	BID_TICK (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	BOND (tda.client.Client.Markets attribute)

 	BOX (tda.orders.common.Destination attribute)

 	bull_call_vertical_close() (in module tda.orders.options)

 	bull_call_vertical_open() (in module tda.orders.options)

 	bull_put_vertical_close() (in module tda.orders.options)

 	bull_put_vertical_open() (in module tda.orders.options)

 	BUTTERFLY (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	BUY (tda.orders.common.EquityInstruction attribute)

 	BUY_ONLY (tda.client.Client.Transactions.TransactionType attribute)

 	BUY_TO_CLOSE (tda.orders.common.OptionInstruction attribute)

 	BUY_TO_COVER (tda.orders.common.EquityInstruction attribute)

 	BUY_TO_OPEN (tda.orders.common.OptionInstruction attribute)

C

 	
 	C2 (tda.orders.common.Destination attribute)

 	CALENDAR (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	CALL (tda.client.Client.Options.ContractType attribute)

 	cancel_order() (tda.client.Client method)

 	CANCELED (tda.client.Client.Order.Status attribute)

 	CASH_IN_OR_CASH_OUT (tda.client.Client.Transactions.TransactionType attribute)

 	CBOE (tda.orders.common.Destination attribute)

 	CHART_DAY (tda.streaming.StreamClient.ChartEquityFields attribute)

 	chart_equity_add() (tda.streaming.StreamClient method)

 	chart_equity_subs() (tda.streaming.StreamClient method)

 	chart_futures_add() (tda.streaming.StreamClient method)

 	chart_futures_subs() (tda.streaming.StreamClient method)

 	CHART_TIME (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

 	CHECKING (tda.client.Client.Transactions.TransactionType attribute)

 	clear_activation_price() (tda.orders.generic.OrderBuilder method)

 	clear_complex_order_strategy_type() (tda.orders.generic.OrderBuilder method)

 	clear_duration() (tda.orders.generic.OrderBuilder method)

 	clear_order_legs() (tda.orders.generic.OrderBuilder method)

 	clear_order_strategy_type() (tda.orders.generic.OrderBuilder method)

 	clear_order_type() (tda.orders.generic.OrderBuilder method)

 	clear_price() (tda.orders.generic.OrderBuilder method)

 	clear_price_link_basis() (tda.orders.generic.OrderBuilder method)

 	clear_price_link_type() (tda.orders.generic.OrderBuilder method)

 	clear_quantity() (tda.orders.generic.OrderBuilder method)

 	clear_requested_destination() (tda.orders.generic.OrderBuilder method)

 	clear_session() (tda.orders.generic.OrderBuilder method)

 	clear_special_instruction() (tda.orders.generic.OrderBuilder method)

 	clear_stop_price() (tda.orders.generic.OrderBuilder method)

 	
 	clear_stop_price_link_basis() (tda.orders.generic.OrderBuilder method)

 	clear_stop_price_link_type() (tda.orders.generic.OrderBuilder method)

 	clear_stop_price_offset() (tda.orders.generic.OrderBuilder method)

 	clear_stop_type() (tda.orders.generic.OrderBuilder method)

 	client_from_access_functions() (in module tda.auth)

 	client_from_login_flow() (in module tda.auth)

 	client_from_manual_flow() (in module tda.auth)

 	client_from_token_file() (in module tda.auth)

 	CLOSE_PRICE (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	COLLAR (tda.client.Client.Options.Strategy attribute)

 	COLLAR_SYNTHETIC (tda.orders.common.ComplexOrderStrategyType attribute)

 	COLLAR_WITH_STOCK (tda.orders.common.ComplexOrderStrategyType attribute)

 	ComplexOrderStrategyType (class in tda.orders.common)

 	CONDOR (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	CONTRACT_TYPE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	copy_price() (tda.orders.generic.OrderBuilder method)

 	copy_stop_price() (tda.orders.generic.OrderBuilder method)

 	COUNT_FOR_KEYWORD (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	COVERED (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	create_saved_order() (tda.client.Client method)

 	create_watchlist() (tda.client.Client method)

 	CUSTOM (tda.orders.common.ComplexOrderStrategyType attribute)

D

 	
 	DAILY (tda.client.Client.PriceHistory.Frequency attribute)

 	(tda.client.Client.PriceHistory.FrequencyType attribute)

 	DAY (tda.client.Client.PriceHistory.PeriodType attribute)

 	(tda.orders.common.Duration attribute)

 	DAYS_TO_EXPIRATION (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	DECEMBER (tda.client.Client.Options.ExpirationMonth attribute)

 	decode_json_string() (tda.contrib.util.HeuristicJsonDecoder method)

 	(tda.streaming.StreamJsonDecoder method)

 	DELAYED (tda.streaming.StreamClient.QOSLevel attribute)

 	delete_saved_order() (tda.client.Client method)

 	delete_watchlist() (tda.client.Client method)

 	DELIVERABLES (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	DELTA (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	DESC_REGEX (tda.client.Client.Instrument.Projection attribute)

 	DESC_SEARCH (tda.client.Client.Instrument.Projection attribute)

 	DESCRIPTION (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	
 	Destination (class in tda.orders.common)

 	DIAGONAL (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	DIGITS (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	DIVIDEND (tda.client.Client.Transactions.TransactionType attribute)

 	DIVIDEND_AMOUNT (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	DIVIDEND_DATE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	DIVIDEND_YIELD (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	DO_NOT_REDUCE (tda.orders.common.SpecialInstruction attribute)

 	DOUBLE_DIAGONAL (tda.orders.common.ComplexOrderStrategyType attribute)

 	DOWN (tda.client.Client.Movers.Direction attribute)

 	Duration (class in tda.orders.common)

E

 	
 	easy_client() (in module tda.auth)

 	ECN_ARCA (tda.orders.common.Destination attribute)

 	enable_bug_report_logging() (tda.debug method)

 	EQUITY (tda.client.Client.Markets attribute)

 	equity_buy_limit() (in module tda.orders.equities)

 	equity_buy_market() (in module tda.orders.equities)

 	equity_buy_to_cover_limit() (in module tda.orders.equities)

 	equity_buy_to_cover_market() (in module tda.orders.equities)

 	equity_sell_limit() (in module tda.orders.equities)

 	equity_sell_market() (in module tda.orders.equities)

 	equity_sell_short_limit() (in module tda.orders.equities)

 	equity_sell_short_market() (in module tda.orders.equities)

 	EquityInstruction (class in tda.orders.common)

 	ERROR_CODE (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	EVERY_FIFTEEN_MINUTES (tda.client.Client.PriceHistory.Frequency attribute)

 	EVERY_FIVE_MINUTES (tda.client.Client.PriceHistory.Frequency attribute)

 	EVERY_MINUTE (tda.client.Client.PriceHistory.Frequency attribute)

 	
 	EVERY_TEN_MINUTES (tda.client.Client.PriceHistory.Frequency attribute)

 	EVERY_THIRTY_MINUTES (tda.client.Client.PriceHistory.Frequency attribute)

 	EXCHANGE_ID (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	EXCHANGE_NAME (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	EXERCISE (tda.orders.common.OrderType attribute)

 	EXPIRATION_DAY (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	EXPIRATION_MONTH (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	EXPIRATION_YEAR (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	EXPIRED (tda.client.Client.Order.Status attribute)

 	EXPRESS (tda.streaming.StreamClient.QOSLevel attribute)

 	extract_order_id() (tda.utils.Utils method)

F

 	
 	FAST (tda.streaming.StreamClient.QOSLevel attribute)

 	FEBRUARY (tda.client.Client.Options.ExpirationMonth attribute)

 	FIFTEEN_YEARS (tda.client.Client.PriceHistory.Period attribute)

 	FILL_OR_KILL (tda.orders.common.Duration attribute)

 	FILLED (tda.client.Client.Order.Status attribute)

 	first_triggers_second() (in module tda.orders.common)

 	FIVE_DAYS (tda.client.Client.PriceHistory.Period attribute)

 	FIVE_YEARS (tda.client.Client.PriceHistory.Period attribute)

 	FOREX (tda.client.Client.Markets attribute)

 	FOUR_DAYS (tda.client.Client.PriceHistory.Period attribute)

 	FUND_PRICE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	FUNDAMENTAL (tda.client.Client.Instrument.Projection attribute)

 	FUTURE (tda.client.Client.Markets attribute)

 	FUTURE_ACTIVE_SYMBOL (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	
 	FUTURE_EXPIRATION_DATE (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_IS_ACTIVE (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_IS_TRADEABLE (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_MULTIPLIER (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_PERCENT_CHANGE (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_PRICE_FORMAT (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_SETTLEMENT_PRICE (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	FUTURE_TRADING_HOURS (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

G

 	
 	GAMMA (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	get_account() (tda.client.Client method)

 	get_accounts() (tda.client.Client method)

 	get_hours_for_multiple_markets() (tda.client.Client method)

 	get_hours_for_single_market() (tda.client.Client method)

 	get_instrument() (tda.client.Client method)

 	get_movers() (tda.client.Client method)

 	get_option_chain() (tda.client.Client method)

 	get_order() (tda.client.Client method)

 	get_orders_by_path() (tda.client.Client method)

 	get_orders_by_query() (tda.client.Client method)

 	get_preferences() (tda.client.Client method)

 	
 	get_price_history() (tda.client.Client method)

 	get_quote() (tda.client.Client method)

 	get_quotes() (tda.client.Client method)

 	get_saved_order() (tda.client.Client method)

 	get_saved_orders_by_path() (tda.client.Client method)

 	get_transaction() (tda.client.Client method)

 	get_transactions() (tda.client.Client method)

 	get_user_principals() (tda.client.Client method)

 	get_watchlist() (tda.client.Client method)

 	get_watchlists_for_multiple_accounts() (tda.client.Client method)

 	get_watchlists_for_single_account() (tda.client.Client method)

 	GOOD_TILL_CANCEL (tda.orders.common.Duration attribute)

H

 	
 	HEADLINE (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	HEADLINE_ID (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	HeuristicJsonDecoder (class in tda.contrib.util)

 	HIGH_52_WEEK (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	HIGH_PRICE (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

I

 	
 	IN_THE_MONEY (tda.client.Client.Options.StrikeRange attribute)

 	INET (tda.orders.common.Destination attribute)

 	Instrument (class in tda.client.Client)

 	Instrument.Projection (class in tda.client.Client)

 	INTEREST (tda.client.Client.Transactions.TransactionType attribute)

 	IRON_CONDOR (tda.orders.common.ComplexOrderStrategyType attribute)

 	IS_HOT (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	IS_REGULAR_MARKET_QUOTE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	
 	IS_REGULAR_MARKET_TRADE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	IS_TRADABLE (tda.streaming.StreamClient.LevelOneForexFields attribute)

 	ISE (tda.orders.common.Destination attribute)

 	ISLAND_ASK_DEPRECATED (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	ISLAND_ASK_SIZE_DEPRECATED (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	ISLAND_BID_DEPRECATED (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	ISLAND_BID_SIZE_DEPRECATED (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	ISLAND_VOLUME_DEPRECATED (tda.streaming.StreamClient.LevelOneEquityFields attribute)

J

 	
 	JANUARY (tda.client.Client.Options.ExpirationMonth attribute)

 	
 	JULY (tda.client.Client.Options.ExpirationMonth attribute)

 	JUNE (tda.client.Client.Options.ExpirationMonth attribute)

K

 	
 	KEYWORD_ARRAY (tda.streaming.StreamClient.NewsHeadlineFields attribute)

L

 	
 	LAST (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	(tda.orders.common.StopType attribute)

 	LAST_ID (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	LAST_PRICE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	(tda.streaming.StreamClient.TimesaleFields attribute)

 	LAST_SEQUENCE (tda.streaming.StreamClient.TimesaleFields attribute)

 	LAST_SIZE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	(tda.streaming.StreamClient.TimesaleFields attribute)

 	
 	level_one_equity_subs() (tda.streaming.StreamClient method)

 	level_one_forex_subs() (tda.streaming.StreamClient method)

 	level_one_futures_options_subs() (tda.streaming.StreamClient method)

 	level_one_futures_subs() (tda.streaming.StreamClient method)

 	level_one_option_subs() (tda.streaming.StreamClient method)

 	LIMIT (tda.orders.common.OrderType attribute)

 	listed_book_subs() (tda.streaming.StreamClient method)

 	login() (tda.streaming.StreamClient method)

 	LOW_52_WEEK (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	LOW_PRICE (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

M

 	
 	MANUAL (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	MARCH (tda.client.Client.Options.ExpirationMonth attribute)

 	MARGINABLE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	MARK (tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	(tda.orders.common.StopType attribute)

 	(tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	MARKET (tda.orders.common.OrderType attribute)

 	MARKET_MAKER (tda.streaming.StreamClient.LevelOneForexFields attribute)

 	
 	MARKET_ON_CLOSE (tda.orders.common.OrderType attribute)

 	Markets (class in tda.client.Client)

 	MAY (tda.client.Client.Options.ExpirationMonth attribute)

 	MESSAGE_DATA (tda.streaming.StreamClient.AccountActivityFields attribute)

 	MESSAGE_TYPE (tda.streaming.StreamClient.AccountActivityFields attribute)

 	MINUTE (tda.client.Client.PriceHistory.FrequencyType attribute)

 	MODERATE (tda.streaming.StreamClient.QOSLevel attribute)

 	MONEY_INTRINSIC_VALUE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	MONTH (tda.client.Client.PriceHistory.PeriodType attribute)

 	MONTHLY (tda.client.Client.PriceHistory.Frequency attribute)

 	(tda.client.Client.PriceHistory.FrequencyType attribute)

 	Movers (class in tda.client.Client)

 	Movers.Change (class in tda.client.Client)

 	Movers.Direction (class in tda.client.Client)

 	MULTIPLIER (tda.streaming.StreamClient.LevelOneOptionFields attribute)

N

 	
 	NASDAQ (tda.orders.common.Destination attribute)

 	nasdaq_book_subs() (tda.streaming.StreamClient method)

 	NAV (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	NEAR_THE_MONEY (tda.client.Client.Options.StrikeRange attribute)

 	NET_CHANGE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	
 	NET_CREDIT (tda.orders.common.OrderType attribute)

 	NET_DEBIT (tda.orders.common.OrderType attribute)

 	NET_ZERO (tda.orders.common.OrderType attribute)

 	news_headline_subs() (tda.streaming.StreamClient method)

 	NON_STANDARD (tda.client.Client.Options.Type attribute)

 	NONE (tda.orders.common.ComplexOrderStrategyType attribute)

 	NORMAL (tda.orders.common.Session attribute)

 	NOVEMBER (tda.client.Client.Options.ExpirationMonth attribute)

 	NYSE (tda.orders.common.Destination attribute)

O

 	
 	OCO (tda.orders.common.OrderStrategyType attribute)

 	OCTOBER (tda.client.Client.Options.ExpirationMonth attribute)

 	one_cancels_other() (in module tda.orders.common)

 	ONE_DAY (tda.client.Client.PriceHistory.Period attribute)

 	ONE_MONTH (tda.client.Client.PriceHistory.Period attribute)

 	ONE_YEAR (tda.client.Client.PriceHistory.Period attribute)

 	OPEN_INTEREST (tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	OPEN_PRICE (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	OPTION (tda.client.Client.Markets attribute)

 	option_buy_to_close_limit() (in module tda.orders.options)

 	option_buy_to_close_market() (in module tda.orders.options)

 	option_buy_to_open_limit() (in module tda.orders.options)

 	
 	option_buy_to_open_market() (in module tda.orders.options)

 	option_sell_to_close_limit() (in module tda.orders.options)

 	option_sell_to_close_market() (in module tda.orders.options)

 	option_sell_to_open_limit() (in module tda.orders.options)

 	option_sell_to_open_market() (in module tda.orders.options)

 	OptionInstruction (class in tda.orders.common)

 	Options (class in tda.client.Client)

 	Options.ContractType (class in tda.client.Client)

 	Options.ExpirationMonth (class in tda.client.Client)

 	Options.Strategy (class in tda.client.Client)

 	Options.StrikeRange (class in tda.client.Client)

 	Options.Type (class in tda.client.Client)

 	options_book_subs() (tda.streaming.StreamClient method)

 	OptionSymbol (class in tda.orders.options)

 	Order (class in tda.client.Client)

 	Order.Status (class in tda.client.Client)

 	ORDERS (tda.client.Client.Account.Fields attribute)

 	OrderStrategyType (class in tda.orders.common)

 	OrderType (class in tda.orders.common)

 	OTHER (tda.client.Client.Transactions.TransactionType attribute)

 	OUT_OF_THE_MONEY (tda.client.Client.Options.StrikeRange attribute)

P

 	
 	PE_RATIO (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	PENDING_ACTIVATION (tda.client.Client.Order.Status attribute)

 	PENDING_CANCEL (tda.client.Client.Order.Status attribute)

 	PENDING_REPLACE (tda.client.Client.Order.Status attribute)

 	PERCENT (tda.client.Client.Movers.Change attribute)

 	(tda.orders.common.PriceLinkType attribute)

 	(tda.orders.common.StopPriceLinkType attribute)

 	PHLX (tda.orders.common.Destination attribute)

 	place_order() (tda.client.Client method)

 	PM (tda.orders.common.Session attribute)

 	POSITIONS (tda.client.Client.Account.Fields attribute)

 	
 	PREFERENCES (tda.client.Client.UserPrincipals.Fields attribute)

 	PriceHistory (class in tda.client.Client)

 	PriceHistory.Frequency (class in tda.client.Client)

 	PriceHistory.FrequencyType (class in tda.client.Client)

 	PriceHistory.Period (class in tda.client.Client)

 	PriceHistory.PeriodType (class in tda.client.Client)

 	PriceLinkBasis (class in tda.orders.common)

 	PriceLinkType (class in tda.orders.common)

 	PRODUCT (tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	PUT (tda.client.Client.Options.ContractType attribute)

Q

 	
 	quality_of_service() (tda.streaming.StreamClient method)

 	QUEUED (tda.client.Client.Order.Status attribute)

 	QUOTE_DAY (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	QUOTE_TIME (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	
 	QUOTE_TIME_IN_LONG (tda.streaming.StreamClient.LevelOneEquityFields attribute)

R

 	
 	REAL_TIME (tda.streaming.StreamClient.QOSLevel attribute)

 	REGULAR_MARKET_LAST_PRICE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	REGULAR_MARKET_LAST_SIZE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	REGULAR_MARKET_NET_CHANGE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	REGULAR_MARKET_TRADE_DAY (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	REGULAR_MARKET_TRADE_TIME (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	REGULAR_MARKET_TRADE_TIME_IN_LONG (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	
 	REJECTED (tda.client.Client.Order.Status attribute)

 	replace_order() (tda.client.Client method)

 	replace_saved_order() (tda.client.Client method)

 	replace_watchlist() (tda.client.Client method)

 	REPLACED (tda.client.Client.Order.Status attribute)

 	RHO (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	ROLL (tda.client.Client.Options.Strategy attribute)

S

 	
 	SEAMLESS (tda.orders.common.Session attribute)

 	search_instruments() (tda.client.Client method)

 	SECURITY_STATUS (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	SELL (tda.orders.common.EquityInstruction attribute)

 	SELL_ONLY (tda.client.Client.Transactions.TransactionType attribute)

 	SELL_SHORT (tda.orders.common.EquityInstruction attribute)

 	SELL_TO_CLOSE (tda.orders.common.OptionInstruction attribute)

 	SELL_TO_OPEN (tda.orders.common.OptionInstruction attribute)

 	SEPTEMBER (tda.client.Client.Options.ExpirationMonth attribute)

 	SEQUENCE (tda.streaming.StreamClient.ChartEquityFields attribute)

 	Session (class in tda.orders.common)

 	set_account_id() (tda.utils.Utils method)

 	set_activation_price() (tda.orders.generic.OrderBuilder method)

 	set_complex_order_strategy_type() (tda.orders.generic.OrderBuilder method)

 	set_duration() (tda.orders.generic.OrderBuilder method)

 	set_json_decoder() (tda.streaming.StreamClient method)

 	set_order_strategy_type() (tda.orders.generic.OrderBuilder method)

 	set_order_type() (tda.orders.generic.OrderBuilder method)

 	set_price() (tda.orders.generic.OrderBuilder method)

 	set_price_link_basis() (tda.orders.generic.OrderBuilder method)

 	set_price_link_type() (tda.orders.generic.OrderBuilder method)

 	set_quantity() (tda.orders.generic.OrderBuilder method)

 	set_requested_destination() (tda.orders.generic.OrderBuilder method)

 	set_session() (tda.orders.generic.OrderBuilder method)

 	set_special_instruction() (tda.orders.generic.OrderBuilder method)

 	set_stop_price() (tda.orders.generic.OrderBuilder method)

 	set_stop_price_link_basis() (tda.orders.generic.OrderBuilder method)

 	set_stop_price_link_type() (tda.orders.generic.OrderBuilder method)

 	set_stop_price_offset() (tda.orders.generic.OrderBuilder method)

 	set_stop_type() (tda.orders.generic.OrderBuilder method)

 	SHORTABLE (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	SINGLE (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.OrderStrategyType attribute)

 	SIX_MONTHS (tda.client.Client.PriceHistory.Period attribute)

 	SLOW (tda.streaming.StreamClient.QOSLevel attribute)

 	SpecialInstruction (class in tda.orders.common)

 	STANDARD (tda.client.Client.Options.Type attribute)

 	(tda.orders.common.StopType attribute)

 	STATUS (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	
 	STOP (tda.orders.common.OrderType attribute)

 	STOP_LIMIT (tda.orders.common.OrderType attribute)

 	StopPriceLinkBasis (class in tda.orders.common)

 	StopPriceLinkType (class in tda.orders.common)

 	StopType (class in tda.orders.common)

 	STORY_DATETIME (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	STORY_ID (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	STORY_SOURCE (tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	STRADDLE (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	STRANGLE (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	StreamClient.AccountActivityFields (class in tda.streaming)

 	StreamClient.ChartEquityFields (class in tda.streaming)

 	StreamClient.ChartFuturesFields (class in tda.streaming)

 	StreamClient.LevelOneEquityFields (class in tda.streaming)

 	StreamClient.LevelOneForexFields (class in tda.streaming)

 	StreamClient.LevelOneFuturesFields (class in tda.streaming)

 	StreamClient.LevelOneFuturesOptionsFields (class in tda.streaming)

 	StreamClient.LevelOneOptionFields (class in tda.streaming)

 	StreamClient.NewsHeadlineFields (class in tda.streaming)

 	StreamClient.QOSLevel (class in tda.streaming)

 	StreamClient.TimesaleFields (class in tda.streaming)

 	STREAMER_CONNECTION_INFO (tda.client.Client.UserPrincipals.Fields attribute)

 	STREAMER_SUBSCRIPTION_KEYS (tda.client.Client.UserPrincipals.Fields attribute)

 	StreamJsonDecoder (class in tda.streaming)

 	STRIKE_PRICE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	STRIKES_ABOVE_MARKET (tda.client.Client.Options.StrikeRange attribute)

 	STRIKES_BELOW_MARKET (tda.client.Client.Options.StrikeRange attribute)

 	STRIKES_NEAR_MARKET (tda.client.Client.Options.StrikeRange attribute)

 	SUBSCRIPTION_KEY (tda.streaming.StreamClient.AccountActivityFields attribute)

 	SURROGATE_IDS (tda.client.Client.UserPrincipals.Fields attribute)

 	SYMBOL (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	(tda.streaming.StreamClient.NewsHeadlineFields attribute)

 	(tda.streaming.StreamClient.TimesaleFields attribute)

 	SYMBOL_REGEX (tda.client.Client.Instrument.Projection attribute)

 	SYMBOL_SEARCH (tda.client.Client.Instrument.Projection attribute)

T

 	
 	tda.auth (module)

 	tda.client (module)

 	tda.debug (module)

 	tda.orders (module)

 	tda.orders.generic (module)

 	tda.streaming (module)

 	TEN_DAYS (tda.client.Client.PriceHistory.Period attribute)

 	TEN_YEARS (tda.client.Client.PriceHistory.Period attribute)

 	THEORETICAL_OPTION_VALUE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	THETA (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	THREE_DAYS (tda.client.Client.PriceHistory.Period attribute)

 	THREE_MONTHS (tda.client.Client.PriceHistory.Period attribute)

 	THREE_YEARS (tda.client.Client.PriceHistory.Period attribute)

 	TICK (tda.orders.common.PriceLinkType attribute)

 	(tda.orders.common.StopPriceLinkType attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	TICK_AMOUNT (tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	TIME_VALUE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	timesale_equity_subs() (tda.streaming.StreamClient method)

 	timesale_futures_subs() (tda.streaming.StreamClient method)

 	timesale_options_subs() (tda.streaming.StreamClient method)

 	TOTAL_VOLUME (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	
 	TRADE (tda.client.Client.Transactions.TransactionType attribute)

 	TRADE_DAY (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	TRADE_TIME (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneForexFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesFields attribute)

 	(tda.streaming.StreamClient.LevelOneFuturesOptionsFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	(tda.streaming.StreamClient.TimesaleFields attribute)

 	TRADE_TIME_IN_LONG (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	TRADING_HOURS (tda.streaming.StreamClient.LevelOneForexFields attribute)

 	TRAILING_STOP (tda.orders.common.OrderType attribute)

 	TRAILING_STOP_LIMIT (tda.orders.common.OrderType attribute)

 	Transactions (class in tda.client.Client)

 	Transactions.TransactionType (class in tda.client.Client)

 	TRIGGER (tda.orders.common.OrderStrategyType attribute)

 	(tda.orders.common.PriceLinkBasis attribute)

 	(tda.orders.common.StopPriceLinkBasis attribute)

 	TWENTY_YEARS (tda.client.Client.PriceHistory.Period attribute)

 	TWO_DAYS (tda.client.Client.PriceHistory.Period attribute)

 	TWO_MONTHS (tda.client.Client.PriceHistory.Period attribute)

 	TWO_YEARS (tda.client.Client.PriceHistory.Period attribute)

U

 	
 	UNBALANCED_BUTTERFLY (tda.orders.common.ComplexOrderStrategyType attribute)

 	UNBALANCED_CONDOR (tda.orders.common.ComplexOrderStrategyType attribute)

 	UNBALANCED_IRON_CONDOR (tda.orders.common.ComplexOrderStrategyType attribute)

 	UNBALANCED_VERTICAL_ROLL (tda.orders.common.ComplexOrderStrategyType attribute)

 	UNDERLYING (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	UNDERLYING_PRICE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	
 	UP (tda.client.Client.Movers.Direction attribute)

 	update_preferences() (tda.client.Client method)

 	update_watchlist() (tda.client.Client method)

 	UserPrincipals (class in tda.client.Client)

 	UserPrincipals.Fields (class in tda.client.Client)

 	Utils (class in tda.utils)

 	UV_EXPIRATION_TYPE (tda.streaming.StreamClient.LevelOneOptionFields attribute)

V

 	
 	VALUE (tda.client.Client.Movers.Change attribute)

 	(tda.orders.common.PriceLinkType attribute)

 	(tda.orders.common.StopPriceLinkType attribute)

 	VEGA (tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	VERTICAL (tda.client.Client.Options.Strategy attribute)

 	(tda.orders.common.ComplexOrderStrategyType attribute)

 	
 	VERTICAL_ROLL (tda.orders.common.ComplexOrderStrategyType attribute)

 	VOLATILITY (tda.streaming.StreamClient.LevelOneEquityFields attribute)

 	(tda.streaming.StreamClient.LevelOneOptionFields attribute)

 	VOLUME (tda.streaming.StreamClient.ChartEquityFields attribute)

 	(tda.streaming.StreamClient.ChartFuturesFields attribute)

W

 	
 	WEEKLY (tda.client.Client.PriceHistory.Frequency attribute)

 	(tda.client.Client.PriceHistory.FrequencyType attribute)

 	
 	WORKING (tda.client.Client.Order.Status attribute)

Y

 	
 	YEAR (tda.client.Client.PriceHistory.PeriodType attribute)

 	
 	YEAR_TO_DATE (tda.client.Client.PriceHistory.Period attribute)

 	(tda.client.Client.PriceHistory.PeriodType attribute)

 _static/minus.png

_static/patreon.png
PATREON

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/github-logo.png

_images/patreon.png
PATREON

_images/attempted-unauth-access.png
Athird-party application may be attempting to make unauthorized access to your account.
/N For help with your account, contact us. For information on securing your account, visit the

_images/discord-logo.png

_static/ajax-loader.gif

_static/attempted-unauth-access.png
Athird-party application may be attempting to make unauthorized access to your account.
/N For help with your account, contact us. For information on securing your account, visit the

nav.xhtml

 Table of Contents

 		
 tda-api: An Unofficial TD Ameritrade Client

 		
 Getting Started

 		
 TD Ameritrade API Access

 		
 Installing tda-api

 		
 Getting Help

 		
 Authentication and Client Creation

 		
 OAuth Refresher

 		
 Fetching a Token and Creating a Client

 		
 Advanced Functionality

 		
 Troubleshooting

 		
 “A third-party application may be attempting to make unauthorized access to your account”

 		
 tda-api Hangs After Successful Login

 		
 Token Parsing Failures

 		
 What If I Can’t Use a Browser?

 		
 HTTP Client

 		
 Asyncio Support

 		
 Calling Conventions

 		
 Return Values

 		
 Creating a New Client

 		
 Orders

 		
 Placing New Orders

 		
 Accessing Existing Orders

 		
 Editing Existing Orders

 		
 Account Info

 		
 Instrument Info

 		
 Option Chain

 		
 Price History

 		
 Current Quotes

 		
 Other Endpoints

 		
 Transaction History

 		
 Saved Orders

 		
 Market Hours

 		
 Movers

 		
 User Info and Preferences

 		
 Watchlists

 		
 Streaming Client

 		
 Use Overview

 		
 Logging In

 		
 Setting Quality of Service

 		
 Subscribing to Streams

 		
 Registering Handlers

 		
 Handling Messages

 		
 Data Field Relabeling

 		
 Interpreting Sequence Numbers

 		
 Unimplemented Streams

 		
 Enabling Real-Time Data Access

 		
 OHLCV Charts

 		
 Equity Charts

 		
 Futures Charts

 		
 Level One Quotes

 		
 Equities Quotes

 		
 Options Quotes

 		
 Futures Quotes

 		
 Forex Quotes

 		
 Futures Options Quotes

 		
 Level Two Order Book

 		
 Equities Order Books: NYSE and NASDAQ

 		
 Options Order Book

 		
 Time of Sale

 		
 Equity Trades

 		
 Futures Trades

 		
 Options Trades

 		
 News Headlines

 		
 Account Activity

 		
 Troubleshooting

 		
 ConnectionClosedOK: code = 1000 (OK), no reason Immediately on Stream Start

 		
 ConnectionClosedError: code = 1006 (connection closed abnormally [internal])

 		
 JSONDecodeError

 		
 Order Templates

 		
 Using These Templates

 		
 Equity Templates

 		
 Buy orders

 		
 Sell orders

 		
 Sell short orders

 		
 Buy to cover orders

 		
 Options Templates

 		
 Building Options Symbols

 		
 Single Options

 		
 Vertical Spreads

 		
 Utility Methods

 		
 What happened to EquityOrderBuilder?

 		
 OrderBuilder Reference

 		
 Optional: Order Specification Introduction

 		
 Constructing OrderBuilder Objects from Historical Orders

 		
 OrderBuilder Reference

 		
 Order Types

 		
 Session and Duration

 		
 Price

 		
 Order Legs

 		
 Requested Destination

 		
 Special Instructions

 		
 Complex Options Strategies

 		
 Composite Orders

 		
 Undocumented Fields

 		
 Utilities

 		
 Get the Most Recent Order

 		
 Example Application

 		
 Getting Help

 		
 Asking for Help on Discord

 		
 Provide Adequate Information

 		
 Format Your Request Properly

 		
 Reporting a Bug

 		
 Enable Logging

 		
 Gather Logs For Your Bug Report

 		
 Submit Your Ticket

 		
 Community-Contributed Functionality

 		
 Custom JSON Decoding

 		
 Contributing to tda-api

 		
 Setting up the Dev Environment

 		
 Development Guidelines

 		
 Test your changes

 		
 Document your code

_static/comment.png

_static/discord-logo.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/github-logo.png

